
Effective ReDoS Detection by Principled Vulnerability Modeling and Exploit
Generation

Xinyi Wang†§∗, Cen Zhang\∗, Yeting Li†§�, Zhiwu Xu‡�, Shuailin Huang†§, Yi Liu\, Yican Yao†§, Yang Xiao†§,
Yanyan Zou†§, Yang Liu\, Wei Huo†§

†{CAS-KLONAT, BKLONSPT}, Institute of Information Engineering, CAS \Nanyang Technological University
§School of Cyber Security, University of Chinese Academy of Sciences ‡Shenzhen University

Abstract—Regular expression Denial-of-Service (ReDoS) is one
kind of algorithmic complexity attack. For a vulnerable regex,
attackers can craft certain strings to trigger the super-linear
worst-case matching time, which causes denial-of-service to
regex engines. Various ReDoS detection approaches have been
proposed recently. Among them, hybrid approaches which
absorb the advantages of both static and dynamic approaches
have shown their performance superiority. However, two key
challenges still hinder the effectiveness of the detection: 1)
Existing modelings summarize localized vulnerability patterns
based on partial features of the vulnerable regex; 2) Existing
attack string generation strategies are ineffective since they
neglected the fact that non-vulnerable parts of the regex may
unexpectedly invalidate the attack string (we name this kind
of invalidation as disturbance.)

RENGAR is our hybrid ReDoS detector with new vulner-
ability modeling and disturbance free attack string generator.
It has the following key features: 1) Benefited by summarizing
patterns from full features of the vulnerable regex, its modeling
is a more precise interpretation of the root cause of ReDoS vul-
nerability. The modeling is more descriptive and precise than
the union of existing modelings while keeping conciseness; 2)
For each vulnerable regex, its generator automatically checks
all potential disturbances and composes generation constraints
to avoid possible disturbances.

Compared with nine state-of-the-art tools, RENGAR detects
not only all vulnerable regexes they found but also 3 – 197 times
more vulnerable regexes. Besides, it saves 57.41% – 99.83%
average detection time compared with tools containing a dy-
namic validation process. Using RENGAR, we have identified 69
zero-day vulnerabilities (21 CVEs) affecting popular projects
which have more than dozens of millions weekly download
count.

1. Introduction

As a key artifact for pattern matching and searching,
regular expressions (abbrev. regexes) with various extended
features (e.g., lookarounds, named groups and condition-
als, etc. [1]) have been widely used in different fields of

∗Equal Contribution.
�Corresponding Authors.

computer science such as programming languages, string
processing tools, database query languages, and natural lan-
guage processing [2]–[6]. Despite their prevalence, poorly-
designed regexes can yield super-linear (i.e., polynomial
and exponential) matching steps [7]–[9], draining valuable
computational resources. Such regexes are vulnerable to
algorithmic denial-of-service (DoS) [10]–[21] attacks, also
known as ReDoS attacks [7]–[9]. It was recently reported
that more than 10% of regexes used in software projects
exhibit super-linear worst-case behavior (i.e., polynomial
and exponential worst-case time complexity with respect to
the given string’s length), and hundreds of popular websites
are threatened by ReDoS attacks [2], [5], [22]. Therefore,
detection of ReDoS vulnerabilities is essential.

Plenty of works were proposed to detect ReDoS vulner-
abilities including static, dynamic, and hybrid approaches.
Static approaches [23]–[27] detect vulnerable regexes by
searching predefined vulnerability patterns based on the
abstract syntax trees (ASTs) or automata structures of the
regex. They are scalable but less accurate. Dynamic ap-
proaches [28]–[31] are based on search-based fuzz testing.
For a given regex, they keep generating attack strings using
search-based algorithms, e.g., genetic algorithms, until a
testing oracle, e.g., matching time, is satisfied. Dynamic
approaches detect vulnerabilities in high precision. Recently,
hybrid approaches [32], [33] combining static analysis and
dynamic validation are proposed. First, static analysis is
applied to locate candidate ReDoS vulnerable regexes. Then,
a series of attack strings are generated based on the features
of the vulnerable regexes. Last, they dynamically validate
whether the ReDoS have been triggered by the generated
strings. These hybrid approaches have made considerable
strides in ReDoS detection.

Despite the noticeable progress, existing works still face
two challenges. C1. Existing modelings summarize vulnera-
bility patterns based on the structural features of the vulner-
able loop subregexes (the subregexes that have quantifiers,
abbr as LS). However, their patterns are localized and not
based on a global understanding of the features of the LS.
Specifically, assuming a vulnerable LS is ∧(r0|r1)+ where
r0, r1 are two subregexes. Existing modelings propose pat-
terns by summarizing features of r0 and r1 without con-
sidering their combinations’. Summarizing patterns without

a global understanding of the features limits the generality
and accuracy of the summarized patterns, leading to both
false positives and false negatives in candidate vulnerability
locations. C2. Existing attack string generators have not
noticed the disturbances among the subregexes inside the
target regex. Commonly, the potential vulnerable subregex
is identified from the regex and the generators construct
strings to attack that subregex. However, the attack will
become ineffective if the prefix of an attack string is un-
expectedly accepted by the regex. Existing methods have
not considered the acceptance caused by the disturbance
from non-vulnerable subregexes. Ignoring these disturbances
can significantly decrease the effectiveness of the generated
attack strings.

To address the above challenges, we propose RENGAR
– a ReDoS vulnerability detector with LS-based vulnerabil-
ity modeling and disturbance free attack string generation
strategy. A1. The key observation behind the modeling is
that the existence of the common match strings among
all subregexes of an LS and their combinations is a more
precise interpretation for the root cause of a ReDoS vul-
nerability. Based on that understanding, RENGAR proposes
three patterns that cover not only vulnerabilities inside the
description scopes of existing patterns but also new vulnera-
bilities out of their scopes. All kinds of exponential ReDoS
vulnerabilities are modeled in one pattern and polynomial
vulnerabilities are summarized as two patterns according to
the structural differences of their root causes. Based on the
modeling, RENGAR designs an identification algorithm to
locate candidate vulnerabilities. A2. To solve the disturbance
issue, we first systematically analyze the possible distur-
bances. Since the common representation of a regex, i.e.,
prefix, pathological, and suffix subregexes, only contains
the vulnerability related subregexes, we propose a fine-
grained representation to additionally model the disturbance-
relevant subregexes. Upon that representation, we enumerate
all possible disturbances among subregexes and summarize
five kinds of disturbances that can invalidate the attack
string. And for each kind of disturbance, we propose specific
constraints to eliminate it. Based on the above, RENGAR de-
signs an attack string generation algorithm. It first calculates
the constraints for all five kinds of disturbances of a given
regex, then uses them to guide the generation.

In evaluation, we compared RENGAR with nine state-
of-the-art ReDoS detectors in seven datasets. The datasets
include four commonly used ones and three real-world
datasets scraped from package managers of Python, Java,
and CSharp on a large scale. The detectors consist of
tools based on static, dynamic, and hybrid approaches. The
results show clear performance advantages of RENGAR:
¶ it can detect 3 – 197 times more ReDoS vulnerable
regexes than the nine detectors; · it detects not only all
vulnerable regexes (45,367) found by the nine detectors but
also vast new vulnerable regexes (130,483); ¸ its average
detection time (0.5828s) is comparable with detectors of
static approaches (0.0007s – 1.5499s) and is clearly less
than the detectors which have a dynamic validation process
(1.3685s – 336.0527s). The detailed evaluation shows that

the superiority of RENGAR comes from both its vulnerability
modeling and attack string generation components. RENGAR
has been applied to find real-world vulnerabilities in 315
popular projects. 69 zero-day vulnerabilities including 21
CVEs have been found. These vulnerabilities cover popular
projects which have more than dozens of millions of weekly
download counts. We responsibly reported these vulnerabil-
ities to the vendors and helped them to fix.

In summary, we made the following contributions:
• We identified two key challenges for detecting ReDoS

vulnerabilities. One is that existing modelings are lo-
calized and only focus on the structural features of the
vulnerable LS. Another is that existing attack string
generators do not handle the disturbances caused by
subregexes of the target regex.

• We proposed a LS-based vulnerability modeling that
captures global features of the vulnerable LS and a
disturbance free attack string generation strategy to
solve the identified challenges. We implemented a tool
called RENGAR.

• We built a new dataset containing 353,012 regexes from
668,666 real-world projects covering Python, Java, and
CSharp. In all datasets, RENGAR shows superior per-
formance advantages compared with nine state-of-the-
art.

• We applied RENGAR to 315 real-world projects and
identified 69 zero-day vulnerabilities (47 of them have
been confirmed with 21 CVEs assigned). All the found
vulnerabilities are responsibly reported.

To facilitate future research, we will release both REN-
GAR and our new dataset [34].

2. Preliminaries

2.1. Background

Notation The following notations will be used in this
paper. Let Σ be a finite alphabet of symbols. The set of all
strings over Σ is denoted by Σ∗. The empty word and the
empty set are denoted by ε and ∅, respectively. We write
N and ∞ for the set of natural numbers and the infinity,
respectively.
Regular Expression (Regex) Regexes are defined on top
of classical regexes. The syntax of classical regexes is given
below:

r ::= ε | ∅ | a | [C] | r|r | rr | r{m,n}

where a ∈ Σ, C ⊆ Σ is a set of characters, m ∈ N, n ∈
N ∪ {∞}, and m ≤ n. Additional operators are defined as
syntactic sugaring of the above operators:

r? = r{0, 1} r ∗ = r{0,∞} r{m} = r{m,m}
r = r{1, 1} r + = r{1,∞} r{m, } = r{m,∞}

A regex over Σ is a well-formed parenthesized formula.
Besides the common rules governing classical regexes (e.g.,
[C], r|r, rr, r1+, r{m,n}), a regex also has the following
constructs: (i) capturing group (r); (ii) non-capturing group

(? : r); (iii) named capturing group (? < name > r); (iv)
lookarounds: positive lookahead (?=r), negative lookahead
(?!r), positive lookbehind (?<=r), and negative lookbehind
(? <!r); (v) anchors: Start-of-line anchor r̂, End-of-line
anchor r$, word boundary r\br, and non-word boundary
r\Br; (vi) lazy quantifier r{m,n}?; and (vii) backrefer-
ences \i which comprise the extended features of regexes.

The language L(r) of a regex r is the set of all strings
accepted by r. A subregex of a regex r is a part of r that
corresponds to a subtree in the AST. Given a regex r, if
a subregex r′ of r has a quantifier, then r′ is called as a
loop subregex (abbr as LS). For an LS, the disjunctions
of LS denotes the outmost subregexes of LS divided by
|. Furthermore, the unfolding of LS is a set of regexes
composed of its disjunctions, that is, the set of all the
iterations on its disjunctions, and the N-unfolding of LS
denotes the set of regexes whose numbers of iterations are
at most N . For example, assuming a regex r is aa(a∗|bc)+,
it has an LS (a ∗ |bc)+ with the quantifier +. The LS
has two disjunctions a∗ and bc, and its 2-unfolding is
{a∗, bc, a ∗ a∗, bcbc, a ∗ bc, bca∗}.
Regex Denial of Service (ReDoS) A regex r is ReDoS-
vulnerable (abbr as vulnerable in following) if and only
if there exists an attack string w whose matching cost
Cost(r, w) is not linear to the length of w. Usually, the cost
is measured by the matching time or the number of back-
tracking of the engine. Commonly speaking, the vulnerabil-
ity of a vulnerable regex r can be represented as three key
subregexes: the prefix subregex ϕ1, the infix or pathological
subregex ϕ2, and the suffix subregex ϕ3, where ϕ2 contains
the position that causes ReDoS, ϕ1 and ϕ3 are subregexes
before and after ϕ2. Existing works [23], [24], [30]–[33]
usually construct an attack string w following the structure
xynz, where x ∈ L(ϕ1), yn ∈ L(ϕ2), and xynz /∈ L(r).
Note that w has the following key features: ¶ y is matched
by multiple distinct subregexes inside the pathological part
ϕ2. For example, assuming ϕ2 is (r1|r2|...|rm)+, its distinct
subreregexes are r1, r2, ..., rm. Then y should be a common
match string among these subregexes. This guarantees yn,
i.e., the repeat of y, can cause ambiguity during the match,
which exponentially or polynomially increases the times of
backtracking in the engine. · xynz is not accepted by r.

2.2. Challenges

Existing works face challenges in both locating candi-
date vulnerabilities and triggering these vulnerabilities.
C1 Inadequate Vulnerability Modeling Existing model-
ings summarize vulnerability patterns based on the structural
features of the vulnerable LS. The main issue of existing
modelings is that their patterns are localized and lack a
global understanding of the features of LS. Specifically,
assuming an LS is represented as ∧(r0|r1) + $ where r0, r1
stand for two subregexes. Existing methods propose patterns
based on the features of r0, r1 without considering the
combinations’, such as r0r0, r0r1, r1r1 (in the unfolding
of LS). Summarizing patterns based on a localized under-
standing of the features can incur inaccurate outcomes. On

one hand, due to the limited understanding, the summa-
rized patterns can be excessively strict which causes the
detectors to miss vulnerabilities, i.e., have false negatives.
On the other hand, if the patterns are excessively loose,
the detectors will falsely mark benign regex as vulnerable,
i.e., have false positives. TABLE 1 illustrates the limitation
using examples. The second and third columns are the two
latest works: ReDoSHunter [33] and Revealer [32]. The last
column RENGAR shows one of our patterns. The second
row details the vulnerability patterns they will use when
detecting the following three regexes. R1 and R2 have
exponential vulnerabilities and R3 is benign. As shown
in the figure, ReDoSHunter and Revealer propose patterns
from different angles based on a, b, ab without considering
their combinations. However, their patterns suffer from both
false positives and false negatives. In comparison, the EOLS
pattern of RENGAR outperforms them in both generality and
preciseness. The superiority of EOLS comes from the fact
that it models the root cause of the vulnerability as the
existence of common match strings among all subregexes
inside the unfolding of the LS, which is a more precise
interpretation. Conclusively, it is interesting and promising
to remodel the vulnerabilities based on the global under-
standing of the features of LS.

C2 Ineffective Attack String Generation Caused by
Disturbances Existing attack string generation techniques
suffer from generating ineffective strings caused by distur-
bances. Briefly, the disturbance is a phenomenon that the
practical match result of an attack string does not meet
the generator’s expectation due to the fact that a prefix
of the attack string can be accepted by the target regex.
This unexpected acceptance can invalidate the attack string
since it stops the exploitation of vulnerabilities inside the
pathological subregex. For example, TABLE 2 shows a
vulnerable regex. Existing methods generate the attack string
w by calculating x, yn, z according to the constraints in the
definition. Specifically, x should be matched by ϕ1, yn is
of the common match strings of the distinct subregexes of
ϕ2, and z is set as a value satisfying xynz /∈ L(r). Usually
z is a random value returned by SAT solver, e.g., the ‘@’
in table. The generator expects the yn can repeatedly cause
match ambiguity, e.g., ‘c’ can be matched by both [ˆa] and
[ˆb] which increases the times of backtracking in engine.
However, as shown in the fourth column, ϕ3 disturbs the
expected match process and makes the attack string harm-
less. To avoid the disturbance, the constraint of yn should
be rewritten as yn ∈ L([ˆa]+) ∧ yn ∈ L([ˆb]+) ∧ yn /∈
L(Σ∗[ˆd]+), which equals to yn ∈ L(d+). Disturbances
can significantly influence the effectiveness of the attack
string generators. In the example, if the disturbance is not
eliminated, the possibility of generating a disturbance free
attack string is much lower than � 0.01% (equals to

1
|L([∧ab])|). The disturbance shown in the example is a case
that the suffix ϕ3 disturbs the pathological subregex ϕ2. In-
deed, there are more kinds of disturbances that can invalidate
the generated attack strings. In summary, the disturbance is
an understudied phenomenon which can significantly affect

TABLE 1: Motivation Examples of C1. Vuln. stands for vulnerability. TP/FP/TN/FN represents the detection result is True Positive/False
Positive/True Negative/False Negative respectively.

∄ r1r2r4,r1r3r4 have common match → Not Vul

Not match any pattern → Not Vul

∄ x,y; rx,ry have common match → Not Vul

∃ r1r2r4, r1r3r4 have common match → Vul

∃ r1r2 , r3 have common match → Vul

RENGARRevealer

Matched Vuln. Pattern

ReDoSHunter

∃ r1.first ∩ r2.first = {a} ≠ ∅ → Vul ∄ r1r2r4, r1r3r4 have common match → Not Vul

∃ r1.first ∩ r3.first = {a} ≠ ∅ → Vul

∃ r1r2r4, r1r3r4 have common match → Vul

^(a|b|ab)+$

r1 r2 r3

^(a|b|ab)+$

r2 r3

^(ab|a|b)+$

r2 r3

① r0 = r1 = r4 = r5 = ɛ

② r0 = r1 = r4 = r5 = ɛ

③ r0 = r1 = r4 = r5 = ɛ ^(b|ab|a)+$

r2 r3

^(a|b|ab)+$

r1 r2 r3

LS

Unfolding of LS:

{r1, r2, r3, r1r1,
r1r2, r1r3, ...}

^(a|ab)+$

r1 r2

① r0 = r1 = r4 = r5 = ɛ
^(a|ab)+$

r2 r3

LS
^(a|ab)+$

r1 r2

Unfolding of LS:

{r1, r2, r1r1,
r1r2, r2r1, ...}

TP

① r0 = r5 = ɛ ^(a(b|b)c)+$

r2 r3 r4r1

^(a(b|b)c)+$

r2 r3 r4r1

LS

{r1r2r4, r1r3r4,
r1r2r4r1r2r4, ...}

Pattern EOD:
R = (r1|r2|...|rk){m, n}, R is vulnerable if
∃ p ≠ q & p, q ∈ [1,k], rp.first ∩ rq.first ≠ ∅
or rp.first ∩ rq.followlast ≠ ∅

Pattern Branch-in-Loop:
R = r0(r1(r2|r3)r4)*r5, R is vulnerable if
r1r2r4 and r1r3r4 have a common match string

Pattern EOLS:
An LS is vulnerable if
any two distinct subregexes inside the unfolding of
LS have a common match string

^(a|b|ab)+$

^(a|ab)+$

^(a(b|b)c)+$R2

R1

R3

FN

FP

TP

TN

TP

TP

Unfolding of LS:

FN

TN

Note: (i) r. first = {a | au ∈ L(r), a ∈ Σ, u ∈ Σ∗}; (ii) r. followlast = {a | uav ∈ L(r), u ∈ L(r), u 6= ε, a ∈ Σ, v ∈ Σ∗}.

TABLE 2: Motivation Example of C2. In “Expected Match” column, ϕ3 means @ is not matched by ϕ3. yn → cmnMatch([∧a]+, [∧b]+)
equals to yn ∈ L([∧a]+) ∧ yn ∈ L([∧b]+).

! → # ^# ^% + [^(]
* → # ∈ ,(.!)
0" → 1234#51ℎ ^# +, ^% + → ^#% + ∈ , .#
8 → *0"9 ∉ , .!.#.$

→ #111 … 111@
#111 … 111@

!! !" !#
* 0" 9

.! .#

Target Regex

#111 … 111@
.!.#.$

Attack String Generation Expected Match Disturbed Match

.$

the effectiveness of the attack string generation. It should
be systematically studied and specific generation methods
should be proposed.

2.3. Our Approach

A1 LS-Based Vulnerability Modeling RENGAR models
vulnerabilities based on the global features of the unfolding
of LS. Our key observation is that the existence of common
match strings among all subregexes inside the unfolding of
LS is a more precise interpretation of the root cause of a
ReDoS vulnerability. Based on that finding, we checked all
vulnerabilities covered in existing works [5], [23]–[27], [32],
[33] and remodeled them using our observation.

As shown in TABLE 3, RENGAR proposes three pat-
terns: EOLS (exponential vulnerability with one patholog-
ical LS), POLS (polynomial vulnerability with one patho-
logical LS), and PTLS (polynomial vulnerability with two
pathological LSes). In the name of the pattern, “exponen-
tial/polynomial” indicates its vulnerability severity. Interest-
ingly, all exponential vulnerabilities are summarized as an

EOLS pattern. This is because the key of any exponential
vulnerability is that: ¶ there is a pathological subregex that
can cause additional backtracking in engine when matching
specific strings; · the pathological subregex has a quantifier
which exponentially magnifies the times of backtracking.
Since LS represents a regex with quantifier, any exponential
vulnerability can be modeled as an LS whose subregexes
inside its unfolding have common match strings. Polynomial
vulnerabilities are summarized as two patterns. PTLS rep-
resents a common type of polynomial vulnerabilities whose
root cause involves two pathological LSes, e.g., a+a+.
POLS describes a special kind of polynomial vulnerabilities
which is caused by a single pathological LS, e.g., a+$.

Figure 1 shows a detailed scope comparison of covered
vulnerabilities among ReDoSHunter, Revealer, and REN-
GAR. The comparison shows that patterns of RENGAR can
cover not only vulnerabilities which can be described by
existing patterns but also new vulnerabilities which cannot.
Especially, RENGAR uses one pattern EOLS to describe all
exponential vulnerabilities while other works use two or

TABLE 3: Three Types of RENGAR Vulnerability Patterns. Vuln. stands for vulnerability.

Vuln. Pattern Vuln. Severity Vuln. Description Example Exhibition

¶ EOLS Exponential
There exists a pathological LS such that any two distinct subregexes

inside the unfolding of LS have a common match string.

ˆ(ab|a|b)+$ belongs to the pattern EOLS as it exists (i) a pathological

LS (ab|a|b)+, and (ii) two distinct subregexes (ab)+ and (a|b)+

have common match strings {ab,abab, . . .}.

· POLS Polynomial
The regex starts with a start-of-line-free subregex r1. The subregex r1
has the following possible forms: (i) r1 is a pathological LS; (ii) r1 =

β0β1 where β1 is a pathological LS and L(Σ∗β0Σ∗) ∩ L(β1) 6= ∅ 1.

a(ba*)+$ belongs to the pattern POLS as it satisfies (i) (ba*)+ is a

pathological LS, and (ii) L(Σ∗aΣ∗) ∩ L((ba*)+) = {ba,baa, . . .} 6= ∅,
where β0 = a and β1 = (ba*)+.

¸ PTLS Polynomial

There exists (i) β0β1 such that β0 and β1 are two pathological LSes

and have a common match string; (ii) β0β1β2 such that β0 and β2
are two pathological LSes, as well as β0, β2, (β0β1 or β1β2) have a

common match string.

ˆ(ab+)+a(\w+)$ belongs to the pattern PTLS as it triggers the second

condition (i) (ab+)+ and (\w+) are two pathological LSes, as well as (ii)

(ab+)+, (\w+) and a(\w+) have common match strings {ab,abb, . . .},
where β0 = (ab+)+, β2 = (\w+) and β1β2 = a(\w+).

TABLE 4: Analysis on Disturbances.

(a) Enumeration of Possible Disturbances. σ represents a string, “-” represents that the corresponding type of disturbance either does not exist (the
condition always be false) or does not invalidate the attack string.

Expected Match Results Disturbed Results
(Accepted by ϑ1)

Disturbed Results
(Accepted by ϕ1ϑ2ϕ3)

Disturbed Results
(Accepted by ϕ1ϕ2ϕ3)

s = x[i], i ∈ [1, |x|] ∃σ, let sσ ∈L(ϕ1) s ∈L(ϑ1) ¶ - -
s = x(yn[i]), i ∈ [1, |yn|] ∃σ, let sσ ∈L(ϕ1ϕ2) s ∈L(ϑ1) · s ∈L(ϕ1ϑ2ϕ3) ¹ s ∈L(ϕ1ϕ2ϕ3) º
s = xyn(z[i]), i ∈ [1, |z|] ∃σ, let sσ ∈L(ϕ1ϕ2¬ϕ3) s ∈L(ϑ1) ¸ - -

(b) Five Disturbance Cases for Attack String Generation.

Disturbance Case Vulnerable Regex r = ϑ1|(ϕ1(ϕ2|ϑ2)ϕ3) Failed Attack String w = xynz Increased Constraint Successful Attack
String w = xynz

¶ if L(ϑ1Σ∗) ∩ L(ϕ1) 6= ∅,
then ϑ1 disturbs ϕ1

a|[ab](c+)+d, where ϑ1 = a, ϕ1 = [ab],
ϕ2 = (c+)+, ϕ3 = d, ϑ2 = ε

x = a, y = c, z = ε where the prefix string
w[1] = a of w can be matched by ϑ1

x /∈ L(ϑ1Σ∗) (1) x =b, y =c, z = ε

· if L(ϑ1Σ∗) ∩ L(ϕ1ϕ2) 6= ∅,
then ϑ1 disturbs ϕ1ϕ2

ab|a([bc]+)+d, where ϑ1 = ab, ϕ1 = a,
ϕ2 = ([bc]+)+, ϕ3 = d, ϑ2 = ε

x = a, y = b, z = ε where the prefix string
w[1 : 2] = ab of w can be matched by ϑ1

xyn /∈ L(ϑ1Σ∗) (2) x =a, y =c, z = ε

¸ if L(ϑ1Σ∗) ∩ L(ϕ1ϕ2¬ϕ3) 6= ∅,
then ϑ1 disturbs ϕ1ϕ2ϕ3

ab*c|a(b+)+[ˆcd], where ϑ1 = ab*c,
ϕ1 = a, ϕ2 = (b+)+, ϕ3 = [ˆcd], ϑ2 = ε

x =a, y =b, z =c where w can be matched
by ϑ1

xynz /∈ L(ϑ1Σ∗) (3) x =a, y =b, z =d

¹ if L(ϑ2ϕ3Σ∗) ∩ L(ϕ2) 6= ∅,
then ϑ2ϕ3 disturbs ϕ2

a(a|((a[bc])+)+)b, where ϑ1 = ε, ϕ1 =
a, ϕ2 = ((a[bc])+)+, ϕ3 = b, ϑ2 = a

x = a, y = ab, z = ε where the prefix string
w[1 :3] = aab of w can be matched by
ϕ1ϑ2ϕ3

yn /∈ L(ϑ2ϕ3Σ∗) (4) x =a, y =ac, z = ε

º if L(ϕ3Σ∗) ∩ L(ϕ2) 6= ∅,
then ϕ3 disturbs ϕ2

a([ˆa]|[ˆb])+[ˆd], where ϑ1 = ϑ2 = ε,
ϕ1 = a, ϕ2 = ([ˆa]|[ˆb])+, ϕ3 = [ˆd]

x = a, y = c, z = d where the prefix string
w[1 : |w|−1] = acc . . .c of w can be
matched by ϕ1ϕ2ϕ3

yn /∈ L(ϕ3Σ∗) (5) x =a, y =d, z = ε

Loop-in-
Loop

P
O
L
S

RENGAR

ReDoSHunter

Revealer

EOLS PTLS POLS

NQ

Loop-in-Loop Loop-after-
Loop

EOD SLQEOA POA

SLQBranch-
in-Loop EOD

EOA NQ

P
T
L
S

E
O
L
S

Branch-in-
Loop

POA/Loop-after-Loop

Figure 1: Vulnerability Scope Comparison for Three Ap-
proaches. The sizes of the shapes do not reflect quantitative proportions
but only qualitative comparison results.

three patterns. This shows the conciseness and generality
of RENGAR’s pattern.

Based on the modeling, RENGAR designs algorithms
to search candidate vulnerable regexes. More details are
presented in Section 3.1.
A2 Disturbance Free Attack String Generation To

systematically analyze the disturbances, we first need to
clarify a refined structure of the vulnerability in the vul-
nerable regex r. It is a commonsense that the vulnerability
of r is represented as three key subregexes: prefix subregex
ϕ1, infix/ pathological subregex ϕ2, and suffix subregex ϕ3.
However, some subregexes of r irrelevant with the vulnera-
bility may disturb the expected match process. For that we
propose a fine-grained representation for the vulnerability of
r, that is ϑ1|(ϕ1(ϕ2|ϑ2)ϕ3), where ϕ1, ϕ2, and ϕ3 represent
the same thing as before, and ϑ1 and ϑ2 are two disturbance
subregexes which are commonly seen as irrelevant with
the vulnerabilities. Note that ϑ1 and ϑ2 are not created,
we highlight them (if they exist in r), since they may
make the match not follow the expected routine. Compared
with the former representation (ϕ1ϕ2ϕ3), the fine-grained
representation keeps more structural information of r. And
the former can be seen as a special case of the fine-grained
one. For example, in the case of regex shown in TABLE 2,
both ϑ1 and ϑ2 are ε and the fine-grained representation is
degraded as the former one.

According to Section 2.1, an attack string w is defined
as xynz satisfying w /∈L(r), x ∈L(ϕ1), and yn ∈L(ϕ2).
Note that w is expected to be not accepted by r. However,

Algorithm 1: General Workflow of RENGAR

Input: a regex r
Output: (is vulnerable, a diagnostic list Γ)

1 r′ ← shape(r);
2 K ← extract(r′);
3 if |K| = 0 then return (false, null) ;
4 S ← LocVuln(r′,K);
5 if |S| = 0 then return (false, null) ;
6 Q ← SolStr(S);
7 Γ← CheckReDoS(Q, r);
8 if |Γ| > 0 then return (true, Γ) ;
9 else return (false, null);

when the disturbance happens, w is accepted since its prefix
is accepted by r (w is also a prefix of itself). For any attack
string w, there are three kinds of disturbed results: its prefix
s is accepted by ϑ1, ϕ1ϑ2ϕ3, and ϕ1ϕ2ϕ3. Besides, the
expected matching results of s can also be divided into
three cases: s is a part of x, s is a part of xyn, and s
is a part of xynz. TABLE 4.(a) enumerates the possible
disturbances by enumerating all pairs of the expected and
disturbed results for a prefix string s. Note that the table
only details five of the nine pairs. The rest four either do
not exist theoretically or cannot invalidate the attack string.
TABLE 4.(b) formalizes the five disturbances and further
illustrates them with examples. For each listed disturbance,
RENGAR eliminates its disturbances by adding constraints
to w. These constraints can guide the generator to generate
disturbance free attack strings. The constraints are listed in
the fourth column of TABLE 4.(b).

Based on the above analysis, RENGAR designs a dis-
turbance free attack string generation algorithm. For each
target regex, the algorithm calculates the existence of the
five disturbances and then unifies all constraints. Last, the
constraints are used to guide disturbance free attack string
generation. See more details in Section 3.2.

3. Methodology

The general workflow of RENGAR is shown as Algo-
rithm 1. RENGAR consists of three steps, namely, candidate
vulnerability searching (Section 3.1), attack string genera-
tion (Section 3.2) and dynamic validation (Section 3.3). In
the first step, RENGAR searches for possible vulnerabilities
defined in our patterns based on LS(es). After that, RENGAR
generates relevant attack strings for each possible vulnerabil-
ity. Finally, it determines whether the regex is pathological
by counting the matching steps of generated strings.

In detail, inspired from Li et al. [33], RENGAR first
converts the initial regex r with backreferences into an
over-approximate backreference-free regex r′ via wrapping
the content of i-th capturing group with a non-capturing
group and replacing each backreference \i with it (line 1).
Since all vulnerability patterns (i.e., EOLS, POLS, and PTLS
patterns) start from an LS, RENGAR then identifies all the
LSes in the regex r′ and save the identified LSes into a set

Algorithm 2: LocVuln
Input: a regex r, an LS list K
Output: a set S

1 S ← {}
2 foreach k ∈ K do
3 ϑ1, ϕ1, ϕ2, ϑ2, ϕ3 ← split(k, r)
4 IReols ← LocEOLS(ϕ2)
5 if IReols is not empty then
6 S +← (η, τ) ← ((ϑ1, ϕ1, IReols, ϑ2, ϕ3),

EOLS)
7 if ϕ1ϕ2 is Start-of-Line-free then
8 if ϕ1 is nullable then
9 IRpols ← LocPOLS(ϕ2)

10 else
11 IRpols ← LocPOLS(ϕ1, ϕ2)
12 if IRpols is not empty then
13 S +← (η, τ) ← ((ϑ1, ϕ1, IRpols, ϑ2,

ϕ3), POLS)
14 foreach k1 ∈ K, k2 ∈ K, k1 6= k2, k1 and k2 not

nested do
15 if k1 and k2 are adjacent then
16 ϕ2 ← splice(k1, k2)
17 IRptls ← LocPTLS(k1, k2)
18 else
19 ρ← getSubRE(k1, k2, r)
20 ϕ2 ← splice(k1, ρ, k2)
21 IRptls ← LocPTLS(k1, ρ, k2)
22 ϑ1, ϕ1, ϕ2, ϑ2, ϕ3 ← split(ϕ2, r)
23 if IRptls is not empty then
24 S +← (η, τ) ← ((ϑ1, ϕ1, IRpols, ϑ2, ϕ3),

PTLS)
25 return S

K (line 2). If K is empty, RENGAR returns false, meaning
that it diagnoses the given regex as safe (line 3). Otherwise,
it statically analyzes all the potential vulnerabilities and
outputs a set S (i.e., a five-tuple consisting of infix sub-
regex, prefix subregex, suffix subregex and two disturbance
subregexes, as well as vuln. pattern) (line 4). If S is empty,
RENGAR returns false, indicating that it diagnoses the given
regex as safe (line 5). Otherwise, it next generates the
corresponding attack strings for each element in S (line 6).
At last, RENGAR dynamically validates the generated attack
strings and returns the confirmed vuln. information (i.e.,
pathological subregex, attack string, vuln. pattern) list Γ
(line 7). RENGAR returns true and the vuln. list Γ if it is
not empty (line 8), or returns false otherwise (line 9).

3.1. Candidate Vulnerability Searching

In this section, we describe Algorithm LocVuln that cir-
cles all the candidate pathological subregexes, as illustrated
in Algorithm 2. Before that, we extract all the LSes K in
the regex r via calling the function extract(r).

TABLE 5: Computing Rules of MaxU(r) of a Regex r.

MaxU(r) Regex r

0 r = ε, r = (? = r1), r = (?!r1), r = (?<= r1), or
r = (?<!r1)

1 r = a ∈ Σ or r = [C] ⊆ Σ

MaxU(r1) +MaxU(r2) r = r1|r2, r = r1r2, r1\br2 or r1\Br2
MaxU(r1) r = r̂1, r = r1$, r = r1?, r = (r1), r = (? : r1),

r = (?<name>r1), or r = \i (references (r1))

MaxU(r1)×m r = r1{m}, r = r1{m,n}, where m = n

MaxU(r1)× (m+ 1) r = r1{m,n} where m 6= n, or r = r1{m, }
MaxU(r1)× 2 r = r1∗ or r = r1+

The major ideas of this algorithm are as follows. Guided
by our fined-grained vulnerability representation, we parti-
tion a regex into different combinations of the prefix, infix,
suffix and two disturbance subregexes (prefix, suffix, and
two disturbance subregexes can be ε), and each of the
combinations must satisfy that the infix subregex contains
potential ReDoS vulnerabilities. In other words, the infix
subregexes are the pathological subregexes. ReDoS vulner-
abilities may be caused by LSes, so each LS (i.e., EOLS and
POLS patterns) is treated as an infix subregex. Furthermore,
ReDoS vulnerabilities may be caused by the combination of
any two non-ancestor-descendant1 LSes (i.e., PTLS pattern).

Specifically, LocVuln first treats each LS k as the patho-
logical subregex (i.e., infix subregex) ϕ2, then extracts the
prefix subregex ϕ1, the suffix subregex ϕ3, the disturbance
subregexes ϑ1 and ϑ2 from r (line 3). Then, LocVuln calls
function LocEOLS to check whether the infix subregex
satisfies the EOLS pattern presented in TABLE 3 and returns
a set IReols of involved regexes that share a common
string (line 4), wherein the unfolding of k is limited by
MaxU(ϕ2), where MaxU is the pre-defined maximum
number of unfoldings given in TABLE 5. If IReols is not
empty, meaning that k is a possible EOLS vulnerability,
then LocVuln sets τ as vulnerability pattern EOLS, creates
a five-tuple η consisting of the set of involved subregexes
(i.e., IReols) and the four subregexes (i.e., ϕ1, ϕ3, ϑ1 and
ϑ2), and further appends the five-tuple η and vulnerability
pattern τ to the set S (line 6). Next, LocVuln calls function
LocPOLS to analyze the satisfiability of pattern POLS.
It is noted that ϕ1ϕ2 should be Start-of-Line-free, which
conforms to the vulnerability description of pattern POLS
presented in TABLE 3. If ϕ1 is nullable, then case (i) is
satisfied, and LocPOLS gets the set IRpols of involved
regexes from ϕ2 (line 9). Otherwise, LocPOLS gets the
involved regex set from ϕ1 and ϕ2 (i.e., Σ∗ϕ1Σ∗ and
ϕ2) (line 11). Similarly, if IRpols is not empty, LocVuln
sets τ as vuln. pattern POLS, and adds the corresponding
vulnerability information into the set S (line 13). After
that, to deal with the cases caused by the combination of
two non-ancestor-descendant LSes, LocVuln considers each
two distinct LSes k1 and k2 such that k1 and k2 are not

1For the regex /(a+b)+c*/, the LS /(a+b)+/ and the LS /a+/
are ancestor-descendant, while the LS /(a+b)+/ and the LS /c*/ are
non-ancestor-descendant, and the LS /a+/ and the LS /c*/ are non-
ancestor-descendant.

nested (line 14). If the two LSes k1 and k2 are adjacent,
according to case (i) of vulnerability pattern PTLS described
in TABLE 3 (line 15), LocVuln concatenates k1 and k2 into
the infix subregex ϕ2 and calls function LocPTLS to gets
the involved regex set IRptls from them (lines 16 − 17).
Otherwise, case (ii) is satisfied. In this case, LocVuln stores
the subregex between k1 and k2 in ρ, concatenates k1, ρ
and k2 into the infix subregex ϕ2, and get the involved
regex set IRptls from k1, ρ and k2 (i.e., besides k1 and k2,
LocPTLS also considers the regexes k1ρ and ρk2) (lines 19
− 21). Different from pattern EOLS and POLS, due to the
infix subregex ϕ2 is changed, LocVuln will re-separate the
prefix subregex ϕ1, the suffix subregex ϕ3, the disturbance
subregexes ϑ1 and ϑ2 for pattern PTLS (line 22). Likewise,
LocVuln will add the vulnerability information into the set
S if IRptls is not empty (line 24). Finally, LocVuln returns
the set S (line 25).

3.2. Attack String Generation

In this section, we describe Algorithm SolStr that gen-
erates attack strings. One key point here is how to generate
effective strings unaffected by disturbances. For this pur-
pose, we first compose the constraints that the attack strings
must satisfy, and then generate them accordingly.

Specifically, for each element consisting of a five-tuple
η and vuln. pattern τ in set S obtained from LocVuln,
SolStr first unpacks the five-tuple η, and respectively ini-
tializes the string set W and the constraint set CS as an
empty set and the set {x ∈ L(ϕ1), xynz /∈ L(r)} (lines 3
− 5). Then, SolStr adds the corresponding constraints to
prevent the generated attack strings from being affected by
disturbances, according to the disturbance cases presented
in TABLE 4.(b) (lines 6 − 18). For example, if ϑ1 6= ε
and L(ϑ1Σ∗) ∩ L(ϕ1) 6= ∅, SolStr adds EQ (1) to CS
(line 8). Next, for each involved regex ir ∈ IR, SolStr
first makes a copy CS ′ of the current constraint set CS
and adds the constraint y ∈ L(ir) to CS ′ (lines 20 − 21).
If the vuln. pattern τ is EOLS, SolStr sets |yn| as NE ,
NP otherwise (lines 22 − 23), where NE and NP are
pre-defined numbers of repetitions for exponential ReDoS
vulnerabilities and polynomial ones, respectively. After that,
SolStr generates a string w = xynz satisfying the constraint
set CS ′, and adds w to W (line 24). Once the attack string
generation for a five-tuple η is finished, SolStr stores the
possible attack stringsW and vuln. pattern τ in dictionary Q
and associates them with the five-tuple η (line 25). Finally,
SolStr returns dictionary Q after all elements in set S are
processed (line 26).

3.3. Dynamic Validation

CheckReDoS validates whether the ReDoS vulnerabil-
ities reported by Algorithm 3 are true via counting the
matching steps of the corresponding attack strings.

First of all, CheckReDoS initializes a diagnostics list
Γ as empty. In particular, for each candidate vulnerability
(η, [W , τ]) ∈ Q, CheckReDoS checks whether there is an

Algorithm 3: SolStr
Input: a regex r, a (five-tuple η, vuln. pattern τ)

set S
Output: a dict Q

1 Q ← {}
2 foreach (η, τ) ∈ S do
3 ϑ1, ϕ1, IR, ϑ2, ϕ3 ← η
4 W ← []
5 constraint set CS ← {x ∈ L(ϕ1), xynz /∈ L(r)}

6 if ϑ1 6= ε then
7 if L(ϑ1Σ∗) ∩ L(ϕ1) 6= ∅ then
8 CS +← EQ (1)
9 if L(ϑ1Σ∗) ∩ L(ϕ1ϕ2) 6= ∅ then

10 CS +← EQ (2)
11 if L(ϑ1Σ∗) ∩ L(ϕ1ϕ2¬ϕ3) 6= ∅ then
12 CS +← EQ (3)
13 if ϑ2 6= ε then
14 if L(ϑ2ϕ3Σ∗) ∩ L(ϕ2) 6= ∅ then
15 CS +← EQ (4)
16 if ϕ3 6= ε then
17 if L(ϕ3Σ∗) ∩ L(ϕ2) 6= ∅ then
18 CS +← EQ (5)
19 foreach ir ∈ IR do
20 CS ′ ← CS
21 CS ′ +← y ∈ L(ir)
22 if τ =EOLS then |yn| = NE ;
23 else |yn| = NP ;
24 generate a string w = xynz that satisfies the

constraints in CS ′, and add it to W;
25 Q[η]← [W, τ]

26 return Q

attack string w ∈ W whose matching steps are greater than
or equal to T = 105, where T is a user-settable threshold
and 105 is the public accepted matching steps [30], [32] for
determining if the regex is pathological. If such an attack
string w exists, CheckReDoS unpacks the five-tuple η and
records the corresponding pathological subregex ϕ2, the
attack string w and the vuln. pattern τ into the list Γ, as
well as stops checking the remaining strings in W . Finally,
CheckReDoS returns the set Γ.

4. Evaluation

Implementation We implemented the RENGAR prototype
with over 13,904 non-comment lines of Java code, which
supports detecting vulnerable regex in four programming
languages including Java, Python, CSharp and JavaScript.
RENGAR leverages a number of other existing tools. First,
our regex parser is built on top of the ANTLR4 frame-
work [35] and makes use of its existing functionalities, such
as parse tree construction and traversal. Second, RENGAR
utilizes the Z3 SMT solver [36] to deduce possible attack

strings for triggering ReDoS vulnerabilities. Finally, lever-
aging the Java regex engine, RENGAR obtains the matching
steps through instrumentation.
Evaluation Questions The evaluation aims to answer the
following research questions (RQs):
• RQ1: How is the performance of RENGAR comparing

with the state-of-the-art ReDoS detection tools?
• RQ2: Is RENGAR improved by solving the discussed

two challenges?
• RQ3: How does RENGAR perform for detecting vul-

nerabilities in real-world applications?

4.1. Experiment Setup

Dataset Our evaluation is based on seven datasets:
(i) Corpus [3], (ii) RegExLib [33], (iii) Snort [33], (iv)
Regex1012, (v) Maven, (vi) NuGet, and (vii) PyPI. The
datasets (i) – (iv) are widely used datasets in previous
ReDoS works. The last three datasets are built by ourselves
covering the real-world regexes of public projects on a
large scale. Specifically, each dataset contains the regexes
of one programming language: Python, Java, and CSharp
for (v), (vi), and (vii). For the dataset build process, we first
collected 279,266 Python projects, 271,839 Java projects,
and 117,561 CSharp projects from PyPI, Maven, and NuGet.
Next, the regexes are statically extracted from these projects.
For Python projects, the regexes are extracted by an AST-
based regex extractor implemented by Davis et al. [5].
For Java and CSharp projects, we implemented our own
regex extractors. In total, there are 353,012 regexes in our
evaluation dataset. The details of these regexes can be found
in TABLE 11 of Appendix 7.1.
Metrics To evaluate the effectiveness of RENGAR, we use
the following evaluation metrics:
• Precision: The ratio of the number of true positives to

the total number of the reported vulnerabilities (includ-
ing true positives and false positives).

• Recall: The ratio of the number of true positives to the
total number of all the real vulnerabilities (including
true positives and false negatives).

Ground Truth The evaluation relies on knowing the
ground truth of ReDoS Vulnerabilities. For these uncon-
firmed regexes from the above datasets, we took the fol-
lowing steps to set up the ground truth: ¶ We obtained a
set of vulnerable regex candidates by applying RENGAR and
other state-of-the-art tools (nine baselines mentioned in Sec-
tion 4.2) to all the regexes inside the datasets, resulting in a
set of suspicious vulnerable regexes (175,850) reported by at
least one approach; · We used the attack strings generated
by these tools to trigger the attacks. Once an attack succeeds,
it means that a PoC which proves the regex is vulnerable
has been found. ¸ For the regexes (12.49%, 21,970 regexes)
which tools cannot generate PoCs, a manual validation
process was conducted for the classification. Three authors
did the manual validation separately and any inconsistent

2 https://regex101.com/library

https://regex101.com/library

RENGAR
safe-regex
Rexploiter

NFAA
RXXR2

Regexploit

0100000

175850
13537

8689
3949
1488

888
0

100000

In
te

rs
ec

tio
n

si
ze 155241

10174 4538 871 21 70 1217 254 1412 213 17 28 73 66 9 1 385 198 155 26 22 5 13 23 212 12 27 23 544

Figure 2: RQ1 UpSet Plot for RENGAR and Five Static Detectors.

RENGAR
Regulator

ReScue

0100000

175850
26479

1107
0

100000

In
te

rs
ec

tio
n

si
ze

149276

25467
95 1012

Figure 3: RQ1 UpSet Plot for RENGAR and Two Dynamic
Detectors.

judgment was discussed until reaching a consensus. One key
strategy which significantly saved our efforts is that we first
wrote scripts to extract the LSes inside the regexes and then
manually validated the vulnerability by solely validating the
LSes. In total, the manual validation costs 1.5 man-months.
Configurations We conducted experiments on a machine
with 20 cores Intel Xeon Silver 4210 CPU @ 2.20GHz
with 27.5MB Cache, 128GB RAM, running Windows 10
operating system. For all the experiments described below
we set parameters NP = 15, 000, NE = 100, and T = 105

in our algorithms. All baselines were configured in the same
settings as reported in their original papers.
Key Concepts on Evaluation Results There are two
concepts involved in our evaluation: “a ReDoS vulnerable
regex” and “an exploitable ReDoS vulnerability”. The for-
mer is the detected TP results in RQ1/RQ2 while the latter is
the reported real-world vulnerability in RQ3. Generally, the
existence of an exploitable ReDoS vulnerability in a real-
world project requires that: ¶ The project contains a ReDoS
vulnerable regex; · It accepts an attacker-controllable input
which can exploit that regex and cause significant conse-
quences such as a severe performance decline. All detectors
including ReDoSHunter, Revealer, and RENGAR limit the
scope to the ReDoS vulnerable regex detection. Identifying
exploitable ReDoS vulnerability from the regexes is out of
scope and requires extensive engineering efforts.

4.2. State-of-the-Art Comparison (RQ1)

Baselines To answer RQ1, we compared RENGAR with
nine state-of-the-art baselines belonging to three paradigms,
i.e., static approaches, dynamic approaches, and hybrid
approaches. Detectors of static approaches, abbr as static

TABLE 6: The Overall Evaluation Results of RQ1. TY
represents the type of detector, which can be S (Static Detector), or D
(Dynamic Detector), or H (Hybrid Detector). TP/FP/FN stands for true
positives/false positives/false negatives respectively. The best value in a
column is highlighted in bold.

Approach TY TP FP FN Precision Recall Avg Time (s)

RXXR2 S 1,488 105 174,362 93.41% 0.85% 0.3428

NFAA S 3,949 284 171,901 93.29% 2.25% 1.5499

Rexploiter S 8,689 3,450 167,161 71.58% 4.94% 0.6186

safe-regex S 13,537 21,799 162,313 38.31% 7.70% 0.4865

Regexploit S 888 32 174,962 96.52% 0.50% 0.0007

ReScue D 1,107 0 174,743 100.00% 0.63% 3.5782

Regulator D 26,479 0 149,371 100.00% 15.06% 336.0527

Revealer H 4,720 0 171,130 100.00% 2.68% 1.3685

ReDoSHunter H 44,005 0 131,845 100.00% 25.02% 1.5543

RENGAR H 175,850 0 0 100.00% 100.00% 0.5828

RENGAR
ReDoSHunter

Revealer

0100000

175850
44005

4720
0

100000

In
te

rs
ec

tio
n

si
ze 131739

39391

106 4614

Figure 4: RQ1 UpSet Plot for RENGAR and Two Hybrid
Detectors.

detectors, include RXXR2 [23], [24], NFAA [27], Rex-
ploiter [25], safe-regex [5], and Regexploit [26]. Detectors
of dynamic approaches, abbr as dynamic detectors, include
ReScue [30] and Regulator [31]. Revealer [32] and Re-
DoSHunter [33] are detectors of hybrid approaches (abbr
as hybrid detectors), which combine static and dynamic
analysis as RENGAR.
Overall Results The overall evaluation results are listed
in TABLE 6. RENGAR significantly outperforms all base-
lines in all metrics except the metric of average detection
time. Similar to other baselines containing dynamic valida-
tion process, RENGAR has no false positive, i.e., the preci-
sion is 100%. The recall of RENGAR is also 100%, while
the highest value of nine baselines is around 25%. Note
that the metrics are calculated based on the collected ground
truth which may miss unknown kinds of ReDoS vulnerable
regexes (See discussion in Section 5). Therefore, the 100%

TABLE 7: RQ1 Detail Comparison with Hybrid Detectors.

Union of Hybrid
Detectors (TP)

RENGAR

(Unique TP/TP)
Unique TP Distribution in Static Component Comparison Unique TP Distribution in Dynamic Component Comparison

Total EOLS POLS PTLS Total Case 1 Case 2 Case 3 Case 4 Case 5

44,111 131,739/175,850 61,370 6,753 (11.00%) 39,897 (65.01%) 14,720 (23.99%) 21,803 1,527 (7.00%) 2,612 (11.98%) 4,450 (20.41%) 216 (0.99%) 12,998 (59.62%)

TABLE 8: RQ1 Detail Comparison with Static Detectors.

Union of Static
Detectors (TP)

RENGAR-Static
(Unique TP/TP)

Unique TP Distribution of Vuln. Patterns

EOLS POLS PTLS

20,609 155,241/175,850 9,215 (5.94%) 121,273 (78.12%) 24,753 (15.94%)

recall value does not mean that RENGAR is able to catch
all kinds of ReDoS vulnerable regexes but represents that
its ReDoS detection ability is greater than the union of all
baselines. Another remarkable point is that RENGAR detects
from 3 to 197 times more ReDoS vulnerable regexes (i.e.,
TP in table) than the other baselines. Specifically, it detects
175,850 unique ReDoS vulnerable regexes, which detects
131,845 more than the second best tool ReDoSHunter. These
comparisons clearly show that the effectiveness of RENGAR
is significantly greater than all baselines. For the time cost of
ReDoS detection, RENGAR has a longer average detection
time than most static detectors. We believe the time cost of
RENGAR is reasonable since: ¶ The static approaches do
not have dynamic validation cost and will suffer from false
positives; · RENGAR shows a clear performance superiority
compared with the dynamic and hybrid detectors which have
a dynamic validation phase.

Figures 2, 3, and 4 are upset plots illustrating the details
of the intersections among the ReDos vulnerable regex sets
found by RENGAR and baselines. For easier interpretation of
the data, the plots are split based on the detector type of the
baselines. These plots have the following common features:
¶ RENGAR is the dominant tool: it not only finds all ReDoS
vulnerable regexes but also uniquely finds most regexes; ·
Without considering RENGAR, there is no dominant base-
line. Specifically, excluding RENGAR, every baseline has its
uniquely identified vulnerable regexes and the majority of
the vulnerable regexes are uniquely identified.
Comparison by Detector Type To understand why and
how RENGAR outperforms the baselines, we further col-
lected detailed information and conducted an analysis. For
the sake of clarity, the comparisons are separately discussed
according to the type of baselines.

For static detectors, we compared and analyzed their
ability of vulnerability patterns with RENGAR. Specifically,
the static component of RENGAR (denoted as RENGAR-
Static) is compared with the union of static detectors, i.e.,
the union set of their detected vulnerable regex sets. As
shown in the first two columns of TABLE 8, RENGAR-Static
locates 175,850 potential vulnerable regexes while the union
locates 20,609. Note that the former result is a superset
of the latter, which shows that the static component of
RENGAR can not only cover all ReDoS vulnerable regexes
of existing detectors but also find new kinds of vulnerable
regexes. Given that there are more than 10 vulnerability

ReScue 2.6304

Regulator 49.4645

RENGAR 0.0771

10 20 30 40 5050

Figure 5: RQ1 Detail Comparison on Speed with Dynamic
Detectors (Seconds).

patterns in five static detectors while RENGAR only uses
three patterns, we conclude that RENGAR has a more general
and effective vulnerability modeling. The 3rd to 5th columns
of TABLE 8 list the percentage of each vulnerability pattern
for TP uniquely identified by RENGAR. Each pattern shows
a decent contribution.

Since the existing dynamic detectors are fuzzing tools,
whose mechanisms are quite different from RENGAR, we
compared and analyzed their performance. As shown in Fig-
ure 3, RENGAR has found 149,276 more vulnerable regexes
than the union set of dynamic detectors. For the 1,012
vulnerable regexes found by all three tools, we compared
their average performance in Figure 5. The reason for the
speed superiority is that RENGAR is much more focused
on finding the modeled vulnerabilities while fuzzers put too
much effort into the random search process.

To understand why RENGAR outperforms hybrid detec-
tors, we compared and analyzed the effectiveness of their
static and dynamic components separately. Figure 4 and the
first two columns of TABLE 7 show that RENGAR can
detect both the TP found by all hybrid detectors (44,111) and
unique TP (131,739). The 3rd to 6th columns in TABLE 7
list the static component comparison results. Similar to the
comparison with static detectors, we compared the number
of TP covered by the static component of RENGAR and
the union of hybrid detectors. In total, there are 61,370 TP
missed by the static components of existing hybrid detectors.
These missed TP can be detected by the EOLS, POLS, and
PTLS patterns used in RENGAR. This proves that the vul-
nerability modeling of RENGAR has better generality. The
last six columns of TABLE 7 show the dynamic component
comparison results. Note that to fairly evaluate the detection
capability of the dynamic component, we compare these
tools upon the intersection set of the TP sets detected by
static components of all tools. This is because adapting
the existing tools to generate attack strings for vulnerable
regexes not recognized by their static components can in-
evitably introduce design/implementation choices made by
us. The intersection set has 48,576 regexes, and RENGAR
uniquely identifies 21,803 (TABLE 7, seventh column). As
shown in the table, all five kinds of disturbances have been

RENGAR-Fold 79202

RENGAR-Disturbed 127641

RENGAR 175850

5× 104 10× 104 15× 104

Figure 6: RQ2 TP Comparison for RENGAR, RENGAR-Fold,
and RENGAR-Disturbed. X-axis is the number of detected TP.

TABLE 9: RQ2 TP Distribution of Vuln. Patterns.

RENGAR-Fold
RENGAR

(Unique TP/TP)
EOLS POLS PTLS

79,202 96,648/175,850 9,239 (9.56%) 66,960 (69.28%) 20,449 (21.16%)

found in the missed TP, which shows the necessity of our
disturbance free attack string generation strategy.

Summary to RQ1: RENGAR shows its performance
superiority by comparing it with nine state-of-the-art
ReDoS detectors. Due to its vulnerability modeling
and disturbance-free attack string generation tech-
niques, it can outperform other tools in both candi-
date vulnerability searching and dynamic triggering.

4.3. Ablation Study (RQ2)

To understand the contributions of the techniques pro-
posed for solving these summarized challenges, we per-
formed ablation studies on each component. We imple-
mented two variants of RENGAR: ¶ RENGAR-Fold, which
replaces LS-Based vulnerability modeling by the merged
modelings of ReDoSHunter and Revealer; · RENGAR-
Disturbed, which disables disturbance free attack string gen-
eration strategies, i.e., it generates the attack strings without
considering the disturbances. Note that using ReDosHunter
and Revealer is enough to represent all hybrid and static
detectors. This is because their static modelings already
cover the union set of detected TPs from all static detectors.
The upset plot in Appendix 7.2 provides the statistical detail.
LS-Based Vulnerability Modeling (C1) RENGAR-Fold
is used as the baseline to study the effectiveness of our
modeling. As shown in Figure 6, the amount of vulnerable
regexes found by RENGAR is more than twice the amount
(2.22 times) of the regexes found by RENGAR-Fold, which
shows a significant performance advantage. The reason is
that many vulnerable regexes have already been missed by
RENGAR-Fold in the candidate vulnerability searching phase
due to the lack of LS-based vulnerability modeling. To fur-
ther show the contribution of the modeling, we did statistics
of the vulnerability pattern information for the vulnerable
regexes that only RENGAR can find. TABLE 9 lists the
distribution: the POLS pattern contributes the most (68.12%)
while the PTLS and EOLS patterns take the percentages
of 21.16% and 9.56% separately. Conclusively, the LS-
based vulnerability modeling significantly contributes to the

TABLE 10: RQ2 TP Distribution of Disturbance Types.

RENGAR

-Disturbed
RENGAR

(Unique TP/TP)
Case 1 Case 2 Case 3 Case 4 Case 5

127,641 48,209/175,850 3,572 (7.41%) 5,781 (11.99%) 11,888 (24.66%) 474 (0.98%) 26,494 (54.96%)

overall performance of RENGAR. Besides, in evaluation,
each type of vulnerability pattern has non-negligible effects.
Disturbance Free Attack String Generation (C2)

RENGAR-Disturbed is used as the baseline to study the
effectiveness of our attack string generation technique. Fig-
ure 6 also shows the performance comparison of RENGAR
and RENGAR-Disturbed. The amount of vulnerable regexes
found by RENGAR is 175,850, which is 1.38 times of the
amount of regexes found by RENGAR-Disturbed (127,641).
In other words, even RENGAR-Disturbed can locate the
same vulnerable candidates as RENGAR, it will falsely
classify 48,209 (27.41% to all vulnerable regexes) regexes
as non-vulnerable due to the failure of generating effective
attack strings. The significant performance differences show
the necessity for tackling the disturbance and the effective-
ness of our generation strategy. TABLE 10 zooms in on
the distribution of the case types of the disturbances for the
vulnerable regexes that cannot be triggered by RENGAR-
Disturbed. The case types listed in descending order are type
5, 3, 2, 1, and 4, whose proportions are 54.96%, 24.66%,
11.99%, 7.41%, and 0.98% correspondingly. In summary,
the disturbance free attack string generation strategy has a
significant impact on the overall performance of RENGAR.
And nearly all types of disturbance cases it tackles take
significant portions in our evaluation.

Summary to RQ2: The evaluation proves not only
the overall effectiveness of the two key components
of RENGAR but also the significance of each pro-
posed pattern and tackled disturbance case.

4.4. Real-world Application (RQ3)

To demonstrate the practicality of RENGAR, we used
RENGAR on real-world projects covering multiple program-
ming languages. Currently, we’ve applied RENGAR on three
languages: Java, Python, and JavaScript. The projects based
on the first two languages are already covered by our real-
world datasets in previous evaluation. Therefore, according
to the previous evaluation results, we picked the projects
ranked by popularity (have high Github stars or down-
load count) and vulnerability severity (EOLS > POLS =
PTLS), manually verified whether the vulnerable regex is
exploitable, reported the vulnerabilities, and helped ven-
dors for the fix. Besides, we also evaluated RENGAR in
JavaScript projects which are not included in our real-world
datasets. We searched popular and vulnerable projects from
NPM3, and followed a similar process as above.

Our manual validation process has three steps: ¶ Iden-
tify whether the vulnerable regexes resides in the main

3 https://www.npmjs.com/

https://www.npmjs.com/

1 /* Vulnerable regex */

2 var string = /"(?:\\.|[^"\\\r\n])*"|'(?:\\.|[^'\\\r\n])*'/;

3 var smartyPattern = RegExp(

4 /* Match comments */

5 /\{*[\s\S]*?*\}/.source + '|' +

6 /* Match PHP tags */

7 /\{php\}[\s\S]*?\{\/php\}/.source + '|' +

8 /* Match smarty blocks */

9 /\{(?:[^{}"']|<str>|\{(?:[^{}"']|\

10 <str>|\{(?:[^{}"']|<str>)*\})*\})*\}/.source

11 .replace(/<str>/g,

12 function(){ return string.source; }),

13 'g');

14

15 /* PoC Code */

16 function trigger_ReDoS_during_code_highlight() {

17 /* ... represents repeating \\\" 15000 times */

18 \"\\\"\\\"\\\"\\\"...\\\"\\\"\\\"

19 }

Figure 7: A Vulnerable Regex in Package prismjs.

functionality code of the project, excluding internal code like
testing scripts. · Identify user-controllable input points and
analyze whether the input points can reach the vulnerable
regex points via data flow taint analysis, using codeql.
¸ Construct an exploit PoC in the format of the project
input. This is the most complex and time-consuming step
since building an exploit for a real-world project requires
extensive project-specific domain knowledge.

After four man-months effort, we analyzed 315 real-
world projects, identified and reported 69 exploitable vulner-
abilities. Among the vulnerabilities, 47 of them were con-
firmed and fixed by vendors and 21 of them were assigned
CVE numbers. Appendix 7.3, TABLE 12 lists the detail of
all reported vulnerabilities.
Case Study #5 prismjs (6,141 K weekly down-
load count) is a lightweight syntax highlighting pack-
age. Its multiple libraries, e.g., prism-pure, prism-ruby,
prism-q, etc, contain a common vulnerable regex in
the code of the core functions, as shown in Fig-
ure 7. First, RENGAR identified that the regex starts
with a start-of-line-free subregex r1 = β0β1 where
β0 =" (resp. β0 ='), β1 =(?:\\.|[ˆ"\\\r\n])*
(resp. β1 =(?:\\.|[ˆ'\\\r\n])*) is an LS and
L(Σ∗β0Σ∗)∩L(β1) = {\\", . . . } 6= ∅ (resp. L(Σ∗β0Σ∗)∩
L(β1) = {\\', . . . } 6= ∅), which triggers vulnerabil-
ity pattern POLS. Then, it generated an attack string
‘"’+‘\\"’×15000 (resp. ‘'’+‘\\'’×15000). Finally, it ver-
ified that the matching steps of the attack string exceed the
corresponding threshold T = 105 and reported that the regex
is ReDoS-vulnerable. Notably, any one pattern of five static
detectors and two hybrid detectors of vulnerabilities cannot
capture the vulnerabilities.
Case Study #9 node-emoji (3,065 K weekly down-
load count) is a nodejs project for handling sim-
ple emoji. The code in its emoji library contains a
vulnerable regex r = ϑ1|(ϕ1(ϕ2|ϑ2)ϕ3) where ϑ1 =
ˆ[\s\uFEFF\xA0]+, ϕ1 = ϑ2 = ε, ϕ2 =
[\s\uFEFF\xA0]+, ϕ3 = ε$, as shown in Figure 8. Sim-
ilarly, RENGAR first statically diagnosed that subregex ϕ2 is
pathological. If we disregard disturbance subregex ϑ1, REN-
GAR generated an attack string ‘\t’×15000 + ‘!’ which

1 /* Vulnerable Regex */

2 var trimSpaceRegex = /^[\s\uFEFF\xA0]+|[\s\uFEFF\xA0]+$/g;

3 Emoji.replace = function replace (str, ...) {

4 var replaced = emoji_related_operations(str);

5 /* Code uses vulnerable regex */

6 return ... ? replaced.replace(trimSpaceRegex, '')

7 : replaced;

8 };

9

10 /* PoC Code */

11 var emoji = require("node-emoji");

12 var attack_str ='a'+'\t'.repeat(15000) + '!';

13 var result = emoji.replace(attack_str, '', true);

Figure 8: A Vulnerable Regex in Package nodejs-tmpl.

indeed triggers ReDoS for separate regex (ϕ1(ϕ2|ϑ2)ϕ3)
while cannot trigger ReDoS for complete regex r. The
reason is that the prefix string ‘\t’×15000 of the gen-
erated string can be matched by the disturbance subregex
ϑ1 in regex r. So it is necessary to take into account the
disturbance subregex ϑ1. Specifically, RENGAR diagnosed
L(ϑ1Σ∗) ∩ L(ϕ1ϕ2) = {\t, . . . } 6= ∅ (i.e., ϑ1 disturbs
ϕ1ϕ2), which satisfies disturbance case ·. Therefore, REN-
GAR added the increased constraint xyn /∈ L(ϑ1Σ∗), and
generated an attack string ‘a’ + ‘\t’×15000 + ‘!’ that can
trigger ReDoS for regex r.

Summary to RQ3: RENGAR can be used for find-
ing vulnerabilities in real-world projects. Benefiting
from its vulnerability modeling and attack string
generation techniques, it can find more kinds of
vulnerabilities.

5. Threats to Validity

External Validity The effectiveness of ReDoS detection
is evaluated on seven datasets, which may not be able to
fully characterize the effectiveness of these approaches. In
that case, the evaluation may exist bias. To alleviate the
potential bias, we select the datasets as follows: Four of the
datasets are the commonly used datasets in existing ReDoS
detection works. The rest three datasets are large-scale real-
world regexes sets covering three different languages, which
are Java, Python, and CSharp. Their regexes are extracted
from all public projects of popular package managers in
that language. At the moment of submission, we have al-
ready built a real-world dataset of JavaScript by scraping
popular projects from NPM. However, the evaluation of
this dataset is too costful to be finished before submission.
The JavaScript dataset contains 431,500 regexes and the
evaluation of some baselines requires huge CPU resources.
For example, according to our estimation, simply applying
detector regulator [31] to the whole dataset can cost approx-
imately 4.6 CPU years. We will evaluate RENGAR on more
languages and update the results on our website [37].
Internal Validity The build process of the ground truth
data may miss labeling some vulnerable regexes. Since there
are more than half a million of regexes in all datasets,
it is unrealistic to manually investigate whether they are

ReDoS vulnerable one by one. Therefore, we collected the
ground truth by first adopting all ReDoS detectors covered in
RQ1 to locate potentially vulnerable regexes, then manually
verifying the regexes which receive discrepant results from
the detectors. If there are vulnerable regexes that cannot be
detected by any detector, they will be optimistically labeled
as benign. This may cause the recall values of all detectors
in evaluation higher than their real value.

6. Related Work

6.1. ReDoS Detection

Static Analysis RXXR2 [24], [38], extended from
RXXR [23], is a static analysis tool which detects ReDoS
vulnerabilities by pumping analysis. However, it is incapable
to detect regexes with polynomial ReDoS vulnerabilities,
and does not support extensions such as lookarounds, and
backreferences. Rexploiter [25] detects ReDoS vulnerable
regexes by adversarial automata construction, and it can
identify polynomial ReDoS vulnerabilities. Similarly, Wei-
deman et al. [27] detect ReDoS vulnerable regexes by NFA
ambiguity analysis, and can also identify polynomial ReDoS
vulnerabilities. But their work does not support most of
the extensions (e.g., lookarounds, backreferences, and non-
capturing groups). All these static analysis methods have
high false positives partly because their patterns are local-
ized and they cannot verify the attack strings they generated.
Dynamic Analysis SDLFuzzer [28], [29] identifies Re-
DoS vulnerabilities by testing the matching time of regexes
against a range of randomly-generated strings. Yet, it does
not support most of extensions (e.g., lookarounds and back-
references), making it less capable. Instead of generating
random strings, ReScue [30] is designed for searching time-
consuming strings. Due to the enormous string search space,
it can only identify exponential or higher polynomial ReDoS
vulnerabilities but is not able to detect lower polynomial
or deeply hided ReDoS. Besides, the effectiveness of the
genetic searching approach relies on the initialization, and
is likely to trap in a local optimum, leaving the results
unstable from one to the other iterations. Regulator [31]
detects ReDoS vulnerabilities based on fuzzing techniques,
which instruments a backtracking regex engine and imple-
ments a novel mutation strategy. However, it may cost too
much time for generating attack strings. Moreover, these
dynamic-based approaches usually output extremely long
and randomly-generated attack strings which can hardly
provide clues for the following ReDoS repair.
Hybrid approaches Revealer [32] takes a hybrid ap-
proach, which combines static and dynamic analysis, by first
using an extended NFA which can support more extensions,
then dynamically generating attack strings by simulating the
matching process of an extended regex. Hybrid detector Re-
DoSHunter [33] is driven by five vulnerability patterns and
uses transformations to support more extensions. However,
as shown by our experiments, both of them are less powerful
than RENGAR mainly due to their limitations in vulnerability
modeling and attack string generation techniques.

6.2. ReDoS Prevention or Alleviation

Some works [39]–[41] try to find equivalent/approximate
ReDoS-invulnerable regexes to replace the ReDoS vulner-
able ones. Among them, Van der Merwe et al. [39] and
Cody-Kenny et al. [40] devote to finding equivalent ReDoS-
invulnerable regexes to replace the original ones. However,
the exact equivalence is too strong to use in practice [5],
[30], which limits their usage in real-world applications. Li
et al. [41] addressed this problem by deducing anti-ReDoS
regexes adopting programming-by-example algorithms. Yet
the quality of anti-ReDoS regex deduced by them highly
depends on the quality of user-provided examples. Based
on ReDoSHunter [33], Li et al. [42] recently introduced a
vulnerability analysis and repair framework benefiting from
their innovative vulnerability patterns and repair patterns.

Alternatively, ReDoS attacks can also be alleviated
by regex matching speedup in some special cases, e.g.,
by parallel algorithms [43], GPU-based algorithms [44],
state-merging algorithms [45], Parsing Expression Gram-
mars (PEGs) [46]–[48], counting automata matching al-
gorithm [49], memoization-based optimization [50] and
recursion-limit/backtracking-limit/time-limit [51]–[53].

7. Conclusion

In this paper, we proposed RENGAR, a ReDoS vulner-
ability detector with LS-based vulnerability modeling and
disturbance free attack string generation strategy. Compared
with existing modelings, the modeling of RENGAR describes
a broader scope of ReDoS vulnerabilities concisely. The
disturbance free attack string generation strategy solves the
problem that the generated attack string can be invalidated
due to the disturbance among subregexes. In evaluation,
RENGAR shows a clear advantage compared with nine state-
of-the-art tools. It detects not only all vulnerable regexes
found by these tools but also 3 – 197 times more vulnerable
regexes. It is also the fastest detector compared with the
detectors which contain a dynamic validation process. Using
RENGAR, we have found 69 vulnerabilities in popular real-
world projects including 21 CVEs.

Acknowledgment

We sincerely thank the anonymous reviewers and shep-
herd for their valuable comments. This work is sup-
ported in part by National Key R&D Program of China
(2022YFB3103900), Strategic Priority Research Program
of the CAS (XDC02030200), Chinese National Natural
Science Foundation (62032010, 62202462, 61972260, and
61836005), the Special Research Assistant Program of the
CAS, the Cyber Security Agency under its National Cy-
bersecurity R&D Programme (NCRP25-P04-TAICeN), NRF
Investigatorship NRF-NRFI06-2020-0001, and the National
Research Foundation through its National Satellite of Excel-
lence in Trustworthy Software Systems (NSOE-TSS) project
under the National Cybersecurity R&D (NCR) Grant award
no. NRF2018NCR-NSOE003-0001.

References

[1] J. E. F. Friedl, Mastering Regular Expressions - Understand
Your Data and Be More Productive: for Perl, PHP, Java, .NET,
Ruby, and More (3. ed.). O’Reilly, 2006. [Online]. Available:
http://www.oreilly.de/catalog/regex3/index.html

[2] L. G. M. IV, J. Donohue, J. C. Davis, D. Lee, and F. Servant,
“Regexes are Hard: Decision-making, Difficulties, and Risks in
Programming Regular Expressions,” in 34th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2019, San
Diego, CA, USA, November 11-15, 2019, 2019, pp. 415–426.
[Online]. Available: https://doi.org/10.1109/ASE.2019.00047

[3] C. Chapman, P. Wang, and K. T. Stolee, “Exploring Regular
Expression Comprehension,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, ASE
2017, Urbana, IL, USA, October 30 - November 03, 2017.
IEEE Computer Society, 2017, pp. 405–416. [Online]. Available:
https://doi.org/10.1109/ASE.2017.8115653

[4] A. Bartoli, A. D. Lorenzo, E. Medvet, and F. Tarlao, “Inference
of Regular Expressions for Text Extraction from Examples,” IEEE
Trans. Knowl. Data Eng., vol. 28, no. 5, pp. 1217–1230, 2016.
[Online]. Available: https://doi.org/10.1109/TKDE.2016.2515587

[5] J. C. Davis, C. A. Coghlan, F. Servant, and D. Lee, “The Impact
of Regular Expression Denial of Service (ReDoS) in Practice: An
Empirical Study at the Ecosystem Scale,” in Proceedings of the 2018
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November
04-09, 2018. ACM, 2018, pp. 246–256. [Online]. Available:
https://doi.org/10.1145/3236024.3236027

[6] J. C. Davis, L. G. M. IV, C. A. Coghlan, F. Servant, and D. Lee,
“Why Aren’t Regular Expressions a Lingua Franca? An Empirical
Study on the Re-use and Portability of Regular Expressions,” in
Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia,
August 26-30, 2019, 2019, pp. 443–454. [Online]. Available:
https://doi.org/10.1145/3338906.3338909

[7] J. Goyvaerts, “Runaway Regular Expressions: Catastrophic Back-
tracking,” 2020, https://www.regular-expressions.info/catastrophic.h
tml.

[8] A. Weidman, “Regular Expression Denial of Service - ReDoS,” 2017,
https://owasp.org/www-community/attacks/Regular expression Den

ial of Service - ReDoS.

[9] T. Kadlec, “Regular Expression Denial of Service (ReDoS) and
Catastrophic Backtracking,” 2017, https://snyk.io/blog/redos-and-c
atastrophic-backtracking/.

[10] W. Blair, A. Mambretti, S. Arshad, M. Weissbacher, W. Robertson,
E. Kirda, and M. Egele, “HotFuzz: Discovering Algorithmic
Denial-of-Service Vulnerabilities through Guided Micro-Fuzzing,” in
27th Annual Network and Distributed System Security Symposium,
NDSS 2020, San Diego, California, USA, February 23-26, 2020,
2020. [Online]. Available: https://www.ndss-symposium.org/ndss-p
aper/hotfuzz-discovering-algorithmic-denial-of-service-vulnerabiliti
es-through-guided-micro-fuzzing/

[11] X. Cai, Y. Gui, and R. Johnson, “Exploiting Unix File-System
Races via Algorithmic Complexity Attacks,” in 30th IEEE
Symposium on Security and Privacy (S&P 2009), 17-20 May 2009,
Oakland, California, USA, 2009, pp. 27–41. [Online]. Available:
https://doi.org/10.1109/SP.2009.10

[12] R. M. Chang, G. Jiang, F. Ivancic, S. Sankaranarayanan, and
V. Shmatikov, “Inputs of Coma: Static Detection of Denial-of-
Service Vulnerabilities,” in Proceedings of the 22nd IEEE Computer
Security Foundations Symposium, CSF 2009, Port Jefferson, New
York, USA, July 8-10, 2009, 2009, pp. 186–199. [Online]. Available:
https://doi.org/10.1109/CSF.2009.13

[13] S. A. Crosby and D. S. Wallach, “Denial of Service
via Algorithmic Complexity Attacks,” in Proceedings of the
12th USENIX Security Symposium, Washington, D.C., USA,
August 4-8, 2003, 2003, pp. 29–44. [Online]. Available:
https://www.usenix.org/conference/12th-usenix-security-symposium

/denial-service-algorithmic-complexity-attacks

[14] K. S. Luckow, R. Kersten, and C. S. Pasareanu, “Symbolic
Complexity Analysis using Context-preserving Histories,” in 2017
IEEE International Conference on Software Testing, Verification and
Validation, ICST 2017, Tokyo, Japan, March 13-17, 2017, 2017, pp.
58–68. [Online]. Available: https://doi.org/10.1109/ICST.2017.13

[15] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana, “SlowFuzz: Au-
tomated Domain-Independent Detection of Algorithmic Complexity
Vulnerabilities,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017, 2017, pp. 2155–2168.

[16] R. Smith, C. Estan, and S. Jha, “Backtracking Algorithmic
Complexity Attacks against a NIDS,” in 22nd Annual Computer
Security Applications Conference (ACSAC 2006), 11-15 December
2006, Miami Beach, Florida, USA, 2006, pp. 89–98. [Online].
Available: https://doi.org/10.1109/ACSAC.2006.17

[17] J. Wei, J. Chen, Y. Feng, K. Ferles, and I. Dillig, “Singularity:
Pattern Fuzzing for Worst Case Complexity,” in Proceedings of
the 2018 ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL,
USA, November 04-09, 2018, 2018, pp. 213–223. [Online]. Available:
https://doi.org/10.1145/3236024.3236039

[18] C. Lemieux, R. Padhye, K. Sen, and D. Song, “PerfFuzz:
Automatically Generating Pathological Inputs,” in Proceedings of
the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2018, Amsterdam, The Netherlands,
July 16-21, 2018, 2018, pp. 254–265. [Online]. Available:
https://doi.org/10.1145/3213846.3213874

[19] J. Burnim, S. Juvekar, and K. Sen, “WISE: Automated Test
Generation for Worst-case Complexity,” in 31st International
Conference on Software Engineering, ICSE 2009, May 16-24, 2009,
Vancouver, Canada, Proceedings, 2009, pp. 463–473. [Online].
Available: https://doi.org/10.1109/ICSE.2009.5070545

[20] K. S. Luckow, R. Kersten, and C. S. Pasareanu, “Complexity Vulner-
ability Analysis using Symbolic Execution,” Softw. Test. Verification
Reliab., vol. 30, no. 7-8, 2020.

[21] Y. Noller, R. Kersten, and C. S. Pasareanu, “Badger: Complexity
Analysis with Fuzzing and Symbolic Execution,” in Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21,
2018, 2018, pp. 322–332.

[22] C. Staicu and M. Pradel, “Freezing the Web: A Study of ReDoS
Vulnerabilities in JavaScript-based Web Servers,” in 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018, 2018, pp. 361–376.

[23] J. Kirrage, A. Rathnayake, and H. Thielecke, “Static Analysis for
Regular Expression Denial-of-Service Attacks,” in Network and Sys-
tem Security - 7th International Conference, NSS 2013, Madrid,
Spain, June 3-4, 2013. Proceedings, 2013, pp. 135–148.

[24] A. Rathnayake and H. Thielecke, “Static Analysis for Regular Ex-
pression Exponential Runtime via Substructural Logics,” CoRR, vol.
abs/1405.7058, 2014.

[25] V. Wüstholz, O. Olivo, M. J. H. Heule, and I. Dillig, “Static Detection
of DoS Vulnerabilities in Programs that Use Regular Expressions,” in
Tools and Algorithms for the Construction and Analysis of Systems
- 23rd International Conference, TACAS 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part
II, 2017, pp. 3–20.

http://www.oreilly.de/catalog/regex3/index.html
http://www.oreilly.de/catalog/regex3/index.html
https://doi.org/10.1109/ASE.2019.00047
https://doi.org/10.1109/ASE.2017.8115653
https://doi.org/10.1109/ASE.2017.8115653
https://doi.org/10.1109/TKDE.2016.2515587
https://doi.org/10.1145/3236024.3236027
https://doi.org/10.1145/3236024.3236027
https://doi.org/10.1145/3338906.3338909
https://doi.org/10.1145/3338906.3338909
https://www.regular-expressions.info/catastrophic.html
https://www.regular-expressions.info/catastrophic.html
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://snyk.io/blog/redos-and-catastrophic-backtracking/
https://snyk.io/blog/redos-and-catastrophic-backtracking/
https://www.ndss-symposium.org/ndss-paper/hotfuzz-discovering-algorithmic-denial-of-service-vulnerabilities-through-guided-micro-fuzzing/
https://www.ndss-symposium.org/ndss-paper/hotfuzz-discovering-algorithmic-denial-of-service-vulnerabilities-through-guided-micro-fuzzing/
https://www.ndss-symposium.org/ndss-paper/hotfuzz-discovering-algorithmic-denial-of-service-vulnerabilities-through-guided-micro-fuzzing/
https://doi.org/10.1109/SP.2009.10
https://doi.org/10.1109/SP.2009.10
https://doi.org/10.1109/CSF.2009.13
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://www.usenix.org/conference/12th-usenix-security-symposium/denial-service-algorithmic-complexity-attacks
https://doi.org/10.1109/ICST.2017.13
https://doi.org/10.1109/ACSAC.2006.17
https://doi.org/10.1145/3236024.3236039
https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1109/ICSE.2009.5070545

[26] D. LLC, “Regexploit: DoS-able Regular Expressions,” 2021, https:
//github.com/doyensec/regexploit.

[27] N. Weideman, B. van der Merwe, M. Berglund, and B. W. Watson,
“Analyzing Matching Time Behavior of Backtracking Regular Ex-
pression Matchers by using Ambiguity of NFA,” in Implementation
and Application of Automata - 21st International Conference, CIAA
2016, Seoul, South Korea, July 19-22, 2016, Proceedings, 2016, pp.
322–334.

[28] B. Sullivan, “Regular Expression Denial of Service Attacks and
Defenses,” 2010, https://docs.microsoft.com/en-us/archive/msdn-m
agazine/2010/may/security-briefs-regular-expression-denial-of-servi
ce-attacks-and-defenses.

[29] ——, “New Tool: SDL Regex Fuzzer,” 2010, http://cloudblogs.mic
rosoft.com/microsoftsecure/2010/10/12/new-tool-sdl-regex-fuzzer.

[30] Y. Shen, Y. Jiang, C. Xu, P. Yu, X. Ma, and J. Lu, “ReScue:
Crafting Regular Expression DoS Attacks,” in Proceedings of the
33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, Montpellier, France, September 3-7, 2018,
2018, pp. 225–235.

[31] R. McLaughlin, F. Pagani, N. Spahn, C. Kruegel, and G. Vigna,
“Regulator: Dynamic Analysis to Detect ReDoS,” in 31th USENIX
Security Symposium, USENIX Security 2022, August 10–12, 2022.
USENIX Association, 2022, pp. 4219–4235.

[32] Y. Liu, M. Zhang, and W. Meng, “Revealer: Detecting and Exploiting
Regular Expression Denial-of-Service Vulnerabilities,” in 42nd IEEE
Symposium on Security and Privacy, SP 2021, San Francisco, CA,
USA, 24-27 May 2021. IEEE, 2021, pp. 1468–1484.

[33] Y. Li, Z. Chen, J. Cao, Z. Xu, Q. Peng, H. Chen, L. Chen, and S. Che-
ung, “ReDoSHunter: A Combined Static and Dynamic Approach
for Regular Expression DoS Detection,” in 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021. USENIX
Association, 2021, pp. 3847–3864.

[34] “Rengar Open Source,” https://sites.google.com/view/rengar/resourc
es.

[35] T. Parrm, “ANTLR,” 2022, https://www.antlr.org.

[36] L. M. de Moura and N. S. Bjørner, “Z3: An Efficient SMT
Solver,” in Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2008, Budapest, Hungary, March 29-April
6, 2008. Proceedings, ser. Lecture Notes in Computer Science,
vol. 4963. Springer, 2008, pp. 337–340. [Online]. Available:
https://doi.org/10.1007/978-3-540-78800-3 24

[37] “Rengar Website,” https://sites.google.com/view/rengar.

[38] A. Rathnayake, “Semantics, Analysis And Security Of Backtrack-
ing Regular Expression Matchers,” Ph.D. dissertation, University of
Birmingham, UK, 2015.

[39] B. van der Merwe, N. Weideman, and M. Berglund, “Turning Evil
Regexes Harmless,” in Proceedings of the South African Institute of
Computer Scientists and Information Technologists, SAICSIT 2017,
Thaba Nchu, South Africa, September 26-28, 2017, 2017, pp. 38:1–
38:10.

[40] B. Cody-Kenny, M. Fenton, A. Ronayne, E. Considine, T. McGuire,
and M. O’Neill, “A Search for Improved Performance in Regular
Expressions,” in Proceedings of the Genetic and Evolutionary Com-
putation Conference, GECCO 2017, Berlin, Germany, July 15-19,
2017, 2017, pp. 1280–1287.

[41] Y. Li, Z. Xu, J. Cao, H. Chen, T. Ge, S. Cheung, and H. Zhao,
“FlashRegex: Deducing Anti-ReDoS Regexes from Examples,” in
35th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2020, Melbourne, Australia, September 21-25,
2020, 2020, pp. 659–671.

[42] Y. Li, Y. Sun, Z. Xu, J. Cao, Y. Li, R. Li, H. Chen, S. Cheung,
Y. Liu, and Y. Xiao, “RegexScalpel: Regular Expression Denial of
Service (ReDoS) Defense by Localize-and-Fix,” in 31st USENIX
Security Symposium, USENIX Security 2022, Boston, MA, USA,
August 10-12, 2022, K. R. B. Butler and K. Thomas, Eds. USENIX
Association, 2022, pp. 4183–4200. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity22/presentation/li-yeting

[43] C. Lin, C. Liu, and S. Chang, “Accelerating Regular Expression
Matching using Hierarchical Parallel Machines On GPU,” in Pro-
ceedings of the Global Communications Conference, GLOBECOM
2011, 5-9 December 2011, Houston, Texas, USA. IEEE, 2011, pp.
1–5.

[44] X. Yu and M. Becchi, “GPU Acceleration of Regular Expression
Matching for Large Datasets: Exploring the Implementation Space,”
in Computing Frontiers Conference, CF’13, Ischia, Italy, May 14 -
16, 2013. ACM, 2013, pp. 18:1–18:10.

[45] M. Becchi and S. Cadambi, “Memory-efficient Regular Expression
Search using State Merging,” in INFOCOM 2007. 26th IEEE Interna-
tional Conference on Computer Communications, Joint Conference of
the IEEE Computer and Communications Societies, 6-12 May 2007,
Anchorage, Alaska, USA. IEEE, 2007, pp. 1064–1072.

[46] B. Ford, “Parsing Expression Grammars: A Recognition-based Syn-
tactic Foundation,” in Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2004, Venice, Italy, January 14-16, 2004, 2004, pp. 111–122.

[47] S. Medeiros, F. Mascarenhas, and R. Ierusalimschy, “From Regexes
to Parsing Expression Grammars,” Sci. Comput. Program., vol. 93,
pp. 3–18, 2014.

[48] IBM, “Rosie Pattern Language (RPL),” 2020, https://rosie-lang.org/.

[49] L. Turonová, L. Holı́k, O. Lengál, O. Saarikivi, M. Veanes, and
T. Vojnar, “Regex Matching with Counting-set Automata,” Proc.
ACM Program. Lang., vol. 4, no. OOPSLA, pp. 218:1–218:30, 2020.
[Online]. Available: https://doi.org/10.1145/3428286

[50] J. C. Davis, F. Servant, and D. Lee, “Using Selective Memoization
to Defeat Regular Expression Denial of Service (ReDoS),” in 2021
IEEE Symposium on Security and Privacy, SP 2021, San Francisco,
CA, USA, May 23-27, 2021, 2021, p. To appear.

[51] Microsoft, “Regex class - C#,” 2020, https://docs.microsoft.com/e
n-us/dotnet/api/system.text.regularexpressions.regex?view=net-5.0.

[52] PHP, “PHP: preg match - Manual,” 2020, https://www.php.net/ma
nual/en/function.preg-match.php.

[53] PCRE, “PCRE - Perl Compatible Regular Expressions,” 2020, https:
//pcre.org/.

https://github.com/doyensec/regexploit
https://github.com/doyensec/regexploit
https://docs.microsoft.com/en-us/archive/msdn-magazine/2010/may/security-briefs-regular-expression-denial-of-service-attacks-and-defenses
https://docs.microsoft.com/en-us/archive/msdn-magazine/2010/may/security-briefs-regular-expression-denial-of-service-attacks-and-defenses
https://docs.microsoft.com/en-us/archive/msdn-magazine/2010/may/security-briefs-regular-expression-denial-of-service-attacks-and-defenses
http://cloudblogs.microsoft.com/microsoftsecure/2010/10/12/new-tool-sdl-regex-fuzzer
http://cloudblogs.microsoft.com/microsoftsecure/2010/10/12/new-tool-sdl-regex-fuzzer
https://sites.google.com/view/rengar/resources
https://sites.google.com/view/rengar/resources
https://www.antlr.org
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://sites.google.com/view/rengar
https://www.usenix.org/conference/usenixsecurity22/presentation/li-yeting
https://www.usenix.org/conference/usenixsecurity22/presentation/li-yeting
https://rosie-lang.org/
https://doi.org/10.1145/3428286
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex?view=net-5.0
https://www.php.net/manual/en/function.preg-match.php
https://www.php.net/manual/en/function.preg-match.php
https://pcre.org/
https://pcre.org/

Appendix

7.1. Detailed Evaluation Dataset

TABLE 11 presents the detailed statistics of evaluation
datasets.

TABLE 11: Statistics of Used Datasets.

Name #Regex Description

Corpus 13,597 Regexes from scraped 3,898 Python projects [3]

RegExLib 8,699 Online regexes from regexlib.com [33]

Snort 15,355 Regexes used in the Snort NIDS [33]

Regex101 10,660 Online regexes from regex101.com

PyPI 118,104 Regexes from scraped 279,266 Python projects

Maven 136,643 Regexes from scraped 271,839 Java projects

NuGet 49,954 Regexes from scraped 117,561 CSharp projects

Total: 353,012

7.2. Statistical Detail for RQ2 Baseline Selection

Figure 9 compares the detected candidate vulnerable
regexes between the union of static components of Re-
DoSHunter and Revealer with the union set of all static
detectors. The result shows that the former can cover all
detected candidates of the latter. Therefore, using the former
as the baseline in RQ2 is enough.

Hunter+Revealer

Remaining-Static-Tools

025000

44731

20609

0

10000

20000

In
te

rs
ec

tio
n

si
ze

24122
20609

Figure 9: UpSet Plot for Static Component of Remaining
Static Tools and The Combination of ReDoSHunter and
Revealer.

7.3. Detail List of Reported Vulnerabilities

TABLE 12 (in the last page) lists the detailed status of
all the reported vulnerabilities.

TABLE 12: Zero-Day Vulnerabilities Detected by RENGAR.

No. Project
Weekly

Downloads
Status

#Vulnerable

ReDoS Regex

#Exploitable

ReDoS Vulnerability

#Vulnerability

Confirmed by Developers
CVE-ID

#1 minimatch 68,439 K Confirmed & Fixed 1 1 1 CVE-2022-3517

#2 clean-css 12,803 K Confirmed & Fixed 1 1 1 –

#3 pillow 12,664 K Confirmed & Fixed 2 2 2 CVE-2021-23437

#4 Color-String 11,798 K Confirmed & Fixed 3 2 2 CVE-2021-29060

#5 prismjs 6,141 K Confirmed & Fixed 14 1 1 CVE-2021-3801

#6 mocha 5,922 K Confirmed & Fixed 1 1 1 –

#7 js-base64 4,180 K Confirmed & Fixed 1 1 1 –

#8 d3-color 4,039 K Confirmed & Fixed 1 1 1 –

#9 node-emoji 3,065 K Confirmed & Fixed 1 1 1 –

#10 pylint 3,045 K Confirmed & Fixed 2 1 1 –

#11 stylelint 3,002 K Confirmed & Fixed 1 1 1 –

#12 semver-regex 2,897 K Confirmed & Fixed 1 1 1 CVE-2021-3795

#13 parse-url 2,695 K Confirmed & Fixed 1 1 1 –

#14 IS-SVG 2,333 K Confirmed & Fixed 3 3 3 CVE-2021-29059

#15 sphinx 2,299 K Awaiting reply 4 1 – –

#16 cron-parser 2,144 K Awaiting reply 1 1 – –

#17 async-validator 977 K Confirmed & Fixed 1 1 1 –

#18 pdfmake 823 K Awaiting reply 3 1 – –

#19 configobj 691 K Confirmed 1 1 1 –

#20 python-markdown2 670 K Confirmed & Fixed 4 2 2 –

#21 jspdf 636 K Confirmed & Fixed 4 1 1 –

#22 python-can 240 K Confirmed 1 1 1 –

#23 GeoJSON.js 180 K Awaiting reply 1 1 – –

#24 json 136 K Awaiting reply 3 1 – –

#25 locutus 134 K Confirmed & Fixed 3 1 1 CVE-2021-23392

#26 tap-mocha-reporter 124 K Confirmed & Fixed 5 1 1 –

#27 fastest-validator 85 K Awaiting reply 2 1 – –

#28 zxcvbn 65 K Confirmed 1 1 1 –

#29 Typo.js 55 K Confirmed & Fixed 1 1 1 –

#30 uslug 34 K Confirmed & Fixed 1 1 1 –

#31 terminal-kit 33 K Confirmed & Fixed 2 1 1 –

#32 is-email 24 K Confirmed & Fixed 1 1 1 CVE-2021-36716

#33 validator.js 18 K Confirmed & Fixed 2 2 2 CVE-2021-3765

#34 validate-color 17 K Confirmed & Fixed 1 1 1 CVE-2021-40892

#35 baron 9 K Awaiting reply 1 1 – –

#36 licia 5 K Confirmed & Fixed 6 2 1 –

#37 markdown-to-json 1 K Awaiting reply 1 1 – –

#38 nfcpy 1 K Awaiting reply 1 1 – –

#39 scniro-validator < 1 K Confirmed & Fixed 1 1 1 CVE-2021-40901

#40 regexfn < 1 K Confirmed & Fixed 1 1 1 CVE-2021-40900

#41 repo-git-downloader < 1 K Confirmed & Fixed 7 5 1 CVE-2021-40899

#42 scaffold-helper < 1 K Confirmed & Fixed 2 1 1 CVE-2021-40898

#43 split-html-to-chars < 1 K Confirmed & Fixed 1 1 1 CVE-2021-40897

#44 todo-regex < 1 K Confirmed & Fixed 1 1 1 CVE-2021-40895

#45 validate-data < 1 K Confirmed & Fixed 1 1 1 CVE-2021-40893

#46 is-it-check < 1 K Confirmed & Fixed 10 1 1 –

#47 statebus < 1 K Awaiting reply 4 1 – –

#48 HamlPy < 1 K Awaiting reply 3 1 – –

#49 plan < 1 K Awaiting reply 1 1 – –

#50 orgparse < 1 K Awaiting reply 3 1 – –

#51 ford < 1 K Awaiting reply 5 1 – –

#52 node-unfluff < 1 K Awaiting reply 4 2 – –

#53 that-value – Confirmed & Fixed 1 1 1 CVE-2021-40896

#54 underscore-99xp – Confirmed & Fixed 1 1 1 CVE-2021-40894

#55 Vfsjfilechooser2 – Confirmed & Fixed 1 1 1 CVE-2021-29061

#56 Prototype – Confirmed & Fixed 3 1 1 CVE-2020-27511

#57 autoconf-archive – Awaiting reply 1 1 – –

Total 135 69 47

	Introduction
	Preliminaries
	Background
	Challenges
	Our Approach

	Methodology
	Candidate Vulnerability Searching
	Attack String Generation
	Dynamic Validation

	Evaluation
	Experiment Setup
	State-of-the-Art Comparison (RQ1)
	Ablation Study (RQ2)
	Real-world Application (RQ3)

	Threats to Validity
	Related Work
	ReDoS Detection
	ReDoS Prevention or Alleviation

	Conclusion
	References
	Detailed Evaluation Dataset
	Statistical Detail for RQ2 Baseline Selection
	Detail List of Reported Vulnerabilities

