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ABSTRACT
Greybox fuzzing has become one of the most effective vulnerability
discovery techniques. However, greybox fuzzing techniques cannot
be directly applied to applications in IoT devices. The main reason
is that executing these applications highly relies on specific system
environments and hardware. To execute the applications in Linux-
based IoT devices, most existing fuzzing techniques use full-system
emulation for the purpose of maximizing compatibility. However,
compared with user-mode emulation, full-system emulation suffers
from great overhead. Therefore, some previous works, such as Firm-
AFL, propose to combine full-system emulation and user-mode
emulation to speed up the fuzzing process. Despite the attempts
of trying to shift the application towards user-mode emulation, no
existing technique supports to execute these applications fully in
the user-mode emulation.

To address this issue, we propose EQUAFL, which can auto-
matically set up the execution environment to execute embedded
applications under user-mode emulation. EQUAFL first executes
the application under full-system emulation and observe for the
key points where the program may get stuck or even crash during
user-mode emulation. With the observed information, EQUAFL can
migrate the needed environment for user-mode emulation. Then,
EQUAFL uses an enhanced user-mode emulation to replay system
calls of network, and resource management behaviors to fulfill the
needs of the embedded application during its execution.

We evaluate EQUAFL on 70 network applications from different
series of IoT devices. The result shows EQUAFL outperforms the
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state-of-the-arts in fuzzing efficiency (on average, 26 times faster
than AFL-QEMU with full-system emulation, 14 times than Firm-
AFL). We have also discovered ten vulnerabilities including six
CVEs from the tested firmware images.
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Software and application security.
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1 INTRODUCTION
With the rapid development of the Internet of Things (IoT), bil-
lions of IoT devices are connected to the Internet. Compared with
traditional IT vendors, vendors of IoT devices pay more attention
to system functionalities, rather than system security. As a result,
various unknown vulnerabilities exist for the application running
in the IoT systems, providing the attackers with a large number
of attack surfaces. For example, in late 2016, the Mirai virus was
developed to exploit the vulnerability of Linux-based IoT devices
that launches a massive DDoS attack on the east coast of the US [35].
This event has brought a significant impact on cyberspace security.
In summary, security researchers need to find vulnerabilities inside
the Linux-based IoT devices as quickly as possible, especially for
those applications which serve as gates between IoT devices and
the Internet.

Greybox fuzzing is a practical testing technique used for finding
vulnerabilities in software. The basic idea of greybox fuzzing is

https://doi.org/10.1145/3533767.3534414
https://doi.org/10.1145/3533767.3534414


ISSTA ’22, July 18–22, 2022, Virtual, South Korea Yaowen Zheng, Yuekang Li, Cen Zhang, Hongsong Zhu, Yang Liu, and Limin Sun

to use light-weight program instrumentation to collect execution
feedback of the program under test (PUT), such as code coverage,
to guide the entire testing process. Although greybox fuzzing has
shown good performance on conventional programs running in
desktop environment, it cannot be directly applied to applications
running in embedded devices. This is mainly because of the lack
of system and hardware support for executing the applications.
To solve this problem, existing greybox fuzzing techniques use
emulation techniques to execute the embedded applications [34, 51].

Existing emulation techniques, such as QEMU, supports both
user-mode emulation and full-system emulation. Compared with
full-system emulation, user-mode emulation enjoys much smaller
execution overhead at the cost of compatibility due to the inability
of emulating the system calls and execution context. Therefore,
most existing greybox fuzzing techniques use full-system emula-
tion to execute the embedded applications. However, this approach
suffers from efficiency problems due to the heavy overhead of emu-
lating an entire system. To improve the efficiency, a recent work,
Firm-AFL, proposes a technique to smartly switch between user-
mode emulation and full-system emulation. The mechanism of
Firm-AFL is that it allows the application to run in user-mode as
long as it is not executing a system call and whenever the appli-
cation meets a system call, Firm-AFL will switch to full-system
emulation to acquire the system call result. Compared with full-
system emulation, Firm-AFL has improved execution speed, but the
improvement becomes negligible when the PUT involves a lot of
system calls. Therefore, the challenge now is, can we execute the
embedded applications fully under user-mode emulation without
sacrificing too much compatibility?

To address the challenge for fuzzing applications in Linux-based
IoT devices, we present EQUAFL, a greybox fuzzing framework
augmented by enhanced user-mode emulation, which enjoys both
high efficiency and high compatibility. The basic mechanism of
the enhanced user-mode emulation is to automatically set up the
execution environment so that the system calls of the PUT can
be directly passed to host machine. In this way, the PUT can fully
execute in user-mode emulation, avoiding the overhead incurred
by the emulation of system calls. In order to automatically set up
the execution environment for the PUT, EQUAFL uses an observe-
replay strategy. First, EQUAFL executes the PUT with full-system
emulation and observes for key behaviors of the system such as
setting the launch variables, generating the configuration files,
network manipulation and so on. Then, EQUAFL will replay the
observed system behaviors to set up the execution environment of
the PUT. Different system behaviors require different observation
and replay methods and the two most complicated behaviors are
dynamic configuration file generation and network interaction.
The former one requires process awareness during observation and
filesystem synchronization during replay. The latter one requires
state aware observation and replay.

We evaluate both the compatibility and efficiency of EQUAFL on
70 real-world applications in Linux-based IoT devices. The result
shows that EQUAFL outperforms both AFL-QEMUwith full-system
emulation (26 times faster in average) and Firm-AFL (14 times faster
in average) in terms of execution speed. During the experiments,

EQUAFL discovers ten previously unknown vulnerabilities (includ-
ing six CVEs) in eighteen embedded devices, proving its usefulness
in real-world vulnerability discovery.

Contributions. In summary, we make the following contributions:

• We proposed a novel technique called EQUAFL which can auto-
matically set up the execution environment to emulate embedded
programs fully in user-mode. The enhanced user-mode emula-
tion of EQUAFL can guarantee both high compatibility and high
efficiency.
• We implemented EQUAFL as a coverage-guided greybox fuzzing
framework based on AFL and QEMU.
• We extensively evaluated EQUAFL on 70 real-world network
applications in different product series from major embedded de-
vice vendors. The result demonstrated the high compatibility and
efficiency of EQUAFL. Also, we found ten 0-day vulnerabilities
including six CVEs with EQUAFL.
• We released the source code of EQUAFL at https://github.com/
zyw-200/EQUAFL to facilitate future research.

2 BACKGROUND
2.1 Emulation-Based Fuzzing
QEMU [2] is a generic machine emulator for various CPU architec-
tures. It supports two modes of emulation: full-system emulation
and user-mode emulation. For IoT systems, full-system emulation
emulates the whole system of the embedded firmware, which in-
cludes the kernel, drivers, and applications. On the contrary, user-
mode emulation only emulate an individual Linux-based applica-
tions in firmware by delegating the system calls to the host machine.
Therefore, comparing with full-system emulation, the advantage
of user-mode emulation is higher execution efficiency because the
overhead of emulating the whole system can be very high, while the
disadvantage of user-mode emulation is the lack of compatibility
because if the applications requires some resources or system calls
not supported by the host machine, then the user-mode emulation
will fail.

Fuzzing is one of the most effective software vulnerability dis-
covery techniques. AFL is a widely used coverage-guided greybox
fuzzer which supports to use QEMU as the emulation engine for
the PUT execution.

AFL + QEMU user-mode emulation. By default, AFL uses user-
mode QEMU as its emulator. Since in user-mode emulation, the
execution of system calls are forwarded directly to the host machine,
the execution of the PUT may lead to unexpected states such as
crash, hang, etc, if the host machine is not compatible with the
PUT. For example, when we run a application (sbin/httpd) from
D-Link firmware (TRENDNet TEW-634GRU series) in AFL, it would
report the message "/var/run/httpd.pid: No such file or directory"
and then exit quickly without running into the deep program states.
Although the fuzzing process is still going on, it only tests the
limited code paths of the application. To explore the failure reasons,
we utilize user-mode QEMU to test 70 network applications in our
evaluation dataset (§6), and finally summarize the failure reasons
as follows.

https://github.com/zyw-200/EQUAFL
https://github.com/zyw-200/EQUAFL
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Figure 1: The workflow of EQUAFL

• Wrong launch variables. Some PUTs terminate at the begin-
ning of the execution because of incorrect or even no launch
variables are provided.
• Missing dynamically generated files. Some PUTs may require
some files such as configuration files before execution. In IoT
devices, most of the such files are generated dynamically during
the booting of the device. Missing these files will cause the PUT
to terminate early.
• Inconsistent NVRAM configurations. NVRAM is a type of
flash memory, which is widely used in IoT devices to store the
configurations. If the configurations stored in the NVRAM of the
IoT device and the host machine conflict with each other, the
PUT will execute with errors.
• Inconsistent network behaviors. Most of the PUTs for IoT
devices need to interact with users through the network. In the
cases where the host machine cannot provide proper network
interactions, the PUT will hang or terminate early.
• Inconsistent process resource limits. Linux system uses pro-
cess resource limit to prevent the over-consumption of specific
system resources by processes. In some cases, the value of pro-
cess resource limit on the host machine is much higher than
that of the emulated firmware, which may prevent the PUT from
executing efficiently on the host machine.
• Lack of hardware. In some cases, the PUT requires specific
hardware to execute and absence of the required hardware will
cause execution failures.

In summary, fuzzing IoT programs with AFL + QEMU user-mode
emulation suffers severe compatibility issues and all the causes
of the execution failures, except for the lack of hardware, can be
avoided by using full-system emulation.

AFL + QEMU full-system emulation. AFL integrated with full-
system emulation of QEMU can support the fuzzing of entire firmware
images and applications in it. However, since QEMU adds a virtual-
ization layer to support the whole firmware emulation, the fuzzing
speed with full system emulation can be pretty slow. Therefore,
fuzzing IoT applications with AFL + QEMU full-system emulation
is not viable in practice.

AFL + QEMU hybrid emulation. To solve the challenges from
above two approaches, Firm-AFL [51] attempted to combine both
full-system emulation and user-mode emulation to support fuzzing
of Linux-based IoT applications. It executes the user-space code in
user-mode emulation and redirect the system calls to full-system

emulation, which guarantees both compatibility and efficiency of
the fuzzing process to a certain degree.

However, Firm-AFL still suffers from efficiency problem when
the application has frequent system call operations such as file read
and write. If a large number of files required by applications are
generated during the firmware initialization, and cannot be found
in the original filesystem, Firm-AFL would frequently redirect the
system call execution from user-mode emulation to full-system
emulation, which greatly slow down the execution speed. Therefore,
the efficiency of Firm-AFL still has room for improvement.

2.2 Terminology
Guest/Host Machine. In full-system emulation, the guest machine
refers to the virtual machine containing the initialized firmware
system running in the emulator. The host machine refers to the
operating system that is hosted on the physical machine (here we
ignore the case where the host machine is also a virtual machine).
The emulator of the guest machine runs in the host machine.
Page Global Directory. Page Global Directory (PGD) refers to
the top physical page frame of a process, which is widely adopted
in the modern operating system. The starting address of PGD is
unique among numerous processes, so that we can use it to identify
a user-space process in Linux-based system. We utilize the PGD
in §4.2 to achieve file-related observation with process awareness.

3 OVERVIEW
The goal of our system is to enable efficient greybox fuzzing of
Linux-based network applications in IoT devices. As discussed
in §2.1, current fuzzing works suffer from either performance or
compatibility problems. On the one hand, AFL with user-mode em-
ulation ensures the high fuzzing speed, but results in low compati-
bility. On the other hand, AFL with full-system emulation emulates
more target applications successfully but lacks efficiency. To this
end, we propose to combine full-system emulation and user-mode
emulation in an innovative manner to develop a fuzzer that satisfies
two requirements:
• High compatibility: Applications should behave the same as in
full-system emulation.
• High efficiency: The speed of fuzzing should be as fast as possible.

The fuzzer we proposed is called EQUAFL, which is an AFL-
based framework through Enhanced QEMU User-mode emulation.
Figure 1 shows the workflow of EQUAFL, which consists of two ma-
jor steps: observation and replay. In the observation stage, EQUAFL
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executes the PUT with full system emulation and observes the key
behaviors of the system. According to the failure reasons discussed
in §2.1, the key behaviors of the system include setting of the launch
variables, file generation, NVRAM related operation, network inter-
action, and process resource limits. Among these behaviors, the two
most complicated behaviors are dynamic configuration file genera-
tion and network interaction. Therefore, we propose to observe the
dynamic configuration file generation and NVRAM configurations
with process awareness (§4.2 and §4.3). Meanwhile, we propose
to observe the network behaviors with state awareness (§4.4). Be-
sides, we use several heuristics to observe other information such
as launch variables and process resource limits (§4.1 and §4.5). In
the replay stage, EQUAFL carries out the replay by either deploying
system resources such as dynamic configuration files on the host
machine or performing the interception of system calls execution
during the user-mode emulation. After the observation and replay
of key behaviors in the emulated system, the PUT can fully exe-
cute in the enhanced user-mode emulation, avoiding the overhead
incurred by delegating the system call execution to the full-system
emulation. Last but not least, we integrate the enhanced user-mode
emulation with the AFL fuzzer by adjusting the PUT lifecycle man-
agement and entry point of fuzzing so that EQUAFL can fuzz IoT
applications which receive inputs from the network.

4 APPROACHES
4.1 Launch Variables Settlement
Launch variables refer to both arguments and environment vari-
ables that the PUT starts with in the emulated system. The PUT
may terminate early without correct launch variables, thus we
need to settle the launch variables when executing the PUT in the
user-mode emulation. Here we denote the PUT as 𝑝∗ 1, and its pro-
gram name, arguments and environment variables as 𝑝∗𝑛𝑎𝑚𝑒 , 𝑝∗𝑣𝑎𝑟𝑠
and 𝑝∗𝑒𝑛𝑣𝑠 . Generally, these variables are stored within embedded
firmware in diverse ways, including written in configuration files,
hard-encoded in binary executables, and even passed by the parent
process. Thus, it is hard to practically extract these parameters via
static approaches. Instead, we propose to obtain concrete values
of 𝑝∗𝑣𝑎𝑟𝑠 and 𝑝∗𝑒𝑛𝑣𝑠 by performing both static pattern analysis for
Linux kernel and run-time analysis during full-system emulation.
Observation. Based on the fact that Linux kernel invokes execve
system call when starting a new program, we dump 𝑝𝑛𝑎𝑚𝑒 , 𝑝𝑣𝑎𝑟𝑠
and 𝑝𝑒𝑛𝑣𝑠 of the newly starting program by instrumenting the
kernel function do_execve during the full-system emulation. Since
do_execve is a common architecture part of the Linux kernel, it is
safe tomake an assumption thatmost Linux-based firmwarewill not
modify that code. Therefore, by analyzing the source code of Linux
kernel, we summarize a binary pattern that can be used to locate
the exact assembly instruction for dumping these launch variables
when emulating the firmware. Specifically, we find three function
call instructions (one calls copy_strings_kernel and another two
call copy_strings), which contain the registers that can be used to
calculate the addresses of 𝑝𝑛𝑎𝑚𝑒 , 𝑝𝑣𝑎𝑟𝑠 and 𝑝𝑒𝑛𝑣𝑠 . Then, we find a
nearest successor basic block from these instructions where QEMU
can instrument. Finally, we dump the values at that basic block
1In the following of this section, we use the asterisk symbol to indicate a variable is
used for replay.

during the system emulation. Specifically, the basic block we choose
is exactly the entry point of the function search_binary_handler.
Replay. After the observation, we obtain a collection of (𝑝𝑛𝑎𝑚𝑒 ,
𝑝𝑣𝑎𝑟𝑠 and 𝑝𝑒𝑛𝑣𝑠 ), which can be used to represent different processes
during the firmware emulation. We then recognize 𝑝𝑣𝑎𝑟𝑠 and 𝑝𝑒𝑛𝑣𝑠
as the target 𝑝∗𝑣𝑎𝑟𝑠 and 𝑝∗𝑒𝑛𝑣𝑠 , where 𝑝𝑛𝑎𝑚𝑒 equals to 𝑝∗𝑛𝑎𝑚𝑒 . In the
fuzzing process, we utilize user-mode emulation to execute 𝑝∗ with
𝑝∗𝑣𝑎𝑟𝑠 and 𝑝∗𝑒𝑛𝑣𝑠 . Eventually, the PUT can run into deep states in
user-mode emulation for further testing.

4.2 Filesystem State Synchronization
In full-system emulation, many firmware images mount a tempo-
rary filesystem and constantly change the filesystem state during
the initialization phase. On the host machine, we cannot update
filesystem state without initialization of firmware. As a result, the
PUT would execute to unexpected states in user-mode emulation
due to improper filesystem state of the host machine. For exam-
ple, firmware dynamically generate files such as configuration files
during the initialization phase [5]. These files are not found in the
original filesystem of firmware. Thus, the PUT may execute to error
states without accessing the specific configuration file on the host
machine.

To this end, we utilize observe-replay strategy to synchronize the
filesystem state between the guest machine and the host machine.
Specifically, we attempt to observe file-related system call execution
in the guest machine. For each observed file-related system call
execution, we re-execute it on the host machine. We constantly
repeat such observe-replay action until we detect that the PUT has
started to run. Until then, the filesystem state for the PUT execution
is fully set up. Unfortunately, when taking replay action on the host
machine, some arguments of file-related system calls are unknown.
Fox example, as shown in the right hand of Figure 2, when we
re-execute the write system call, we cannot specify the value of
𝑓 𝑑∗

ℎ𝑜𝑠𝑡
directly. To solve this problem, we propose a process-aware

observation approach to build the mapping for files between the
guest machine and the host machine.
Accurate Process Identification. To achieve the process-aware
observation, we first propose to identify the current executing
process in the guest machine. The workflow of the process identifi-
cation consist of two steps: process collection and process inference.
In the process collection step, we constantly update the information
of all the running processes during the firmware emulation. Specifi-
cally, since both fork and execve system calls take part in creating
a new process, we instrument at the end of these two system call
execution to gather the information of newly generated process. At
the instrumentation point, we traverse task_struct data structure
(the process descriptor in Linux kernel), and find newly generated
one that represents new process. For each process, we obtain the
information from task_struct including the starting address of
page global directory (PGD), process identifier (PID) and PID of
the parent process (PPID). Finally, the set 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 that contains
information of all the running processes is produced as shown
in Equation 1. In the process inference step, we acquire the PGD
value of the current executing process 𝑝 by monitoring the specific
register or memory regions. For example, for the ARM architecture,
we obtain the PGD value of 𝑝 by accessing the specified register of
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Figure 2: Example of process-aware observation

system control co-processor (CP15). After obtaining the PGD value,
we further search 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 to find the matching item where the
value of PGD are equal. We obtain the PID and PPID of 𝑝 , which
will be used for the filesystem state synchronization between the
guest machine and the host machine.

𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ← {(𝑡𝑝𝑔𝑑 , 𝑡𝑝𝑖𝑑 , 𝑡𝑝𝑝𝑖𝑑 ) |𝑡 ∈ 𝑡𝑎𝑠𝑘_𝑠𝑡𝑟𝑢𝑐𝑡} (1)

Process-aware Observation. With the ability to identify the cur-
rent executing process in the guest machine, we start to observe the
file-related system call execution with process awareness. Initially,
we filter the file-related system calls that do not affect file states or
modify the file contents (e.g., read). Then, we classify the rest of the
file-related system calls into two types based on their arguments
as shown in Table 1: one type is to directly handle the file path;
another type is to handle the the file descriptor. For the latter type,
we cannot easily get the corresponding file descriptor on the host
machine. Therefore, we propose to observe the relation of files with
process awareness as illustrated in Figure 2. First, we monitor the
system call that creates a file (e.g., open) and get the returned file
descriptor 𝑓 𝑑𝑔𝑢𝑒𝑠𝑡 . Also, we identify current executing process 𝑝
that executes the system call. Meanwhile, we re-execute the same
system call on the host machine, and get the returned file descriptor
𝑓 𝑑ℎ𝑜𝑠𝑡 . Since the firmware may create a copy of file descriptor by
executing dup-like system calls, we add the associated guest file
descriptors into the set 𝐹𝐷𝑔𝑢𝑒𝑠𝑡 as shown in Equation 2. Since Linux
is multi-task operating system, file descriptors can be inherited by
child processes to take part in the modification of files. Thus, we
associate the processes and add them to 𝑃 as shown in Equation 3.
After that, we create the mapping𝑀 as shown in Equation 4, which
builds up the relation between 𝑃 , 𝐹𝐷𝑔𝑢𝑒𝑠𝑡 and 𝑓 𝑑ℎ𝑜𝑠𝑡 . That means,
in the subsequent execution, if the process belongs to 𝑃 , and it exe-
cutes other file-related system calls on a file descriptor that belongs
to 𝐹𝐷𝑔𝑢𝑒𝑠𝑡 , we re-execute the system call on 𝑓 𝑑ℎ𝑜𝑠𝑡 on the host
machine.

Δ𝐹𝐷𝑔𝑢𝑒𝑠𝑡 ← {∀𝑓 𝑑 ′ | 𝑓 𝑑 ′ = 𝐷𝑈𝑃 (𝑓 𝑑) ∧ 𝑓 𝑑 ∈ 𝐹𝐷𝑔𝑢𝑒𝑠𝑡 }
𝐹𝐷𝑔𝑢𝑒𝑠𝑡 ← 𝐹𝐷𝑔𝑢𝑒𝑠𝑡 ∪ Δ𝐹𝐷𝑔𝑢𝑒𝑠𝑡

(2)

𝑃 ← {∀𝑝 ′ | 𝑝 ′
𝑝𝑖𝑑

= 𝑝𝑝𝑖𝑑 ∨ 𝑝 ′𝑝𝑝𝑖𝑑 = 𝑝𝑝𝑖𝑑 } (3)

𝑀 : 𝑃 × 𝐹𝐷𝑔𝑢𝑒𝑠𝑡 ↦−→ 𝑓 𝑑ℎ𝑜𝑠𝑡 (4)

Replay. For each file-related system call invoked in the guest ma-
chine, we re-execute it on the host machine to synchronize the

Table 1: File-related system calls

Argument Type System Calls

File paths mount, mkdir, rmdir, mkdirat, link, symlink, unlink
File descriptor open, read, write, dup, dup2, dup3, create, fcntl, pipe

Algorithm 1: Replay of File-related System Call Execution
1 def Replaying(𝑖𝑑𝑠𝑦𝑠 , 𝑝∗, 𝑜𝑏 𝑗_𝑎𝑟𝑔, 𝑜𝑡ℎ𝑒𝑟_𝑎𝑟𝑔𝑠, 𝑅𝐷𝐼𝑅):
2 if Type(𝑜𝑏 𝑗_𝑎𝑟𝑔) = string then
3 𝑝𝑎𝑡ℎ𝑔𝑢𝑒𝑠𝑡 ← 𝑜𝑏 𝑗_𝑎𝑟𝑔;
4 if 𝑝𝑎𝑡ℎ𝑔𝑢𝑒𝑠𝑡 .startwith(’/’) = true then
5 𝑝𝑎𝑡ℎℎ𝑜𝑠𝑡 ← strcat(𝑅𝐷𝐼𝑅, 𝑝𝑎𝑡ℎ𝑔𝑢𝑒𝑠𝑡 ) ;
6 else
7 𝑝𝑎𝑡ℎℎ𝑜𝑠𝑡 ← 𝑝𝑎𝑡ℎ𝑔𝑢𝑒𝑠𝑡 ;
8 if Type(𝑝𝑎𝑡ℎ𝑔𝑢𝑒𝑠𝑡 ) = symbolic_link then
9 𝑝𝑎𝑡ℎ𝑠𝑜𝑢𝑟𝑐𝑒 ← get_source(𝑝𝑎𝑡ℎ𝑔𝑢𝑒𝑠𝑡 );

10 if 𝑝𝑎𝑡ℎ𝑠𝑜𝑢𝑟𝑐𝑒 .startwith(’/’) = true then
11 𝑝𝑎𝑡ℎ𝑠𝑜𝑢𝑟𝑐𝑒 ← strcat(𝑅𝐷𝐼𝑅, 𝑝𝑎𝑡ℎ𝑠𝑜𝑢𝑟𝑐𝑒 ) ;
12 do_syscall(𝑖𝑑𝑠𝑦𝑠 , 𝑝𝑎𝑡ℎℎ𝑜𝑠𝑡 , 𝑜𝑡ℎ𝑒𝑟_𝑎𝑟𝑔𝑠);
13 else
14 𝑓 𝑑∗𝑔𝑢𝑒𝑠𝑡 ← 𝑜𝑏 𝑗_𝑎𝑟𝑔;
15 𝑓 𝑑∗

ℎ𝑜𝑠𝑡
←M(𝑝∗, 𝑓 𝑑∗𝑔𝑢𝑒𝑠𝑡 );

16 do_syscall(𝑖𝑑𝑠𝑦𝑠 , 𝑓 𝑑∗ℎ𝑜𝑠𝑡 , 𝑜𝑡ℎ𝑒𝑟_𝑎𝑟𝑔𝑠) ;

filesystem state. Generally, we show the overall procedure of file
system call execution replay in Algorithm 1. The inputs of algo-
rithm include (1) 𝑖𝑑𝑠𝑦𝑠 : the system call we are replaying; (2) 𝑝∗: the
process that executes the system call 𝑖𝑑𝑠𝑦𝑠 in the guest machine; (3)
𝑜𝑏 𝑗_𝑎𝑟𝑔: the argument of 𝑖𝑑𝑠𝑦𝑠 that refers to the file object. It can
be a file path or a file descriptor. (4) 𝑜𝑡ℎ𝑒𝑟_𝑎𝑟𝑔𝑠: other arguments
of 𝑖𝑑𝑠𝑦𝑠 except 𝑜𝑏 𝑗_𝑎𝑟𝑔; (5) 𝑅𝐷𝐼𝑅: the absolute directory path of
extracted firmware filesystem on the host machine.

The replay procedure of file-related system call execution can
be divided into two parts. For the system calls that handle a file
path 𝑝𝑎𝑡ℎ𝑔𝑢𝑒𝑠𝑡 , we infer a new file path 𝑝𝑎𝑡ℎℎ𝑜𝑠𝑡 to assure that the
replay can be restricted in the extracted firmware directory instead
of the root directory on the host machine. If 𝑝𝑎𝑡ℎ𝑔𝑢𝑒𝑠𝑡 is an absolute
path, we add 𝑅𝐷𝐼𝑅 in front of 𝑝𝑎𝑡ℎ𝑔𝑢𝑒𝑠𝑡 to generate 𝑝𝑎𝑡ℎℎ𝑜𝑠𝑡 . If
𝑝𝑎𝑡ℎ𝑔𝑢𝑒𝑠𝑡 is a symbolic link and its source 𝑝𝑎𝑡ℎ𝑠𝑜𝑢𝑟𝑐𝑒 is an absolute
path, we add 𝑅𝐷𝐼𝑅 in front of 𝑝𝑎𝑡ℎ𝑠𝑜𝑢𝑟𝑐𝑒 . After that, we execute
the system call on 𝑝𝑎𝑡ℎℎ𝑜𝑠𝑡 (line 2 – 12). On the other hand, for the
file-related system call that handle a file descriptor, we identify the
current executing process 𝑝∗, and utilize the mapping M as built
via Equation 4. Based on it, we find out 𝑓 𝑑∗

ℎ𝑜𝑠𝑡
, and finally execute

the system call on it in the host machine (line 14 – 16).

4.3 NVRAM Configuration
We utilize observe-replay strategy to generate the run-time NVRAM
configurations on the host machine.
Observation. In the state-of-the-art full-system emulation tech-
niques (e.g., FIRMADYNE [5]), regular files are allocated to store
the data of NVRAM configuration. Thus, the emulation of NVRAM
access is implemented by redirecting related APIs to the data ac-
cess in such regular files. Since we have achieved filesystem state
synchronization on the host machine as elaborated in §4.2, the files
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that stored the data of NVRAM configuration are also generated
on the host machine.
Replay. In the user-mode emulation, we perform the replay by
redirecting the NVRAM access of the PUT to the NVRAM configu-
ration files on the host machine. Specifically, we utilize LD_PRELOAD
technique to execute the PUT with a customized library, which
overwrites all the NVRAM-related APIs including set, get, commit
and clear NVRAM operations.

4.4 Network Behavior
Unlike other system behaviors, network behaviors can be affected
by the network interaction with the outside world. For example,
due to different occasions that the user send the request to the PUT,
the network-related system call sequences would vary widely in
different runs. To emulate the network behavior, we first learn the
network state machine from plenty of observed network-related
system call sequences. Then, we emulate the network behavior of
the PUT based on the state machine.
State-aware Observation. First, we automatically collect network-
related system call sequences of the PUT during full-system emu-
lation. Since applications in Linux system use socket not only for
the network communication but for the inter-process communica-
tion, we identify the network-related socket by monitoring 𝑡𝑦𝑝𝑒
parameter of socket system call. If 𝑡𝑦𝑝𝑒 is identical to AF_INET6
or AF_INET, we identify the generated socket as a network-related
descriptor 𝑓 𝑑𝑛𝑒𝑡 . Later on, the system calls executing on 𝑓 𝑑𝑛𝑒𝑡 are
identified as network-related system calls. After we collect network-
related system calls sequence, we carry out the state machine as
shown in Figure 3 to guide the emulation of network behaviors.
Specifically, the Linux kernel issues a series of common network-
related system calls to support network communication. Most of
the network-related system calls including bind, listen, accept,
read/recv/recvfrom are executed in a certain order. Otherwise,
network-related applications could not achieve network communi-
cations correctly.

Furthermore, I/O multiplexing operations are frequently used in
our network applications to monitor the network sockets whether
they are ready to read or write. Representative system calls con-
sist of Poll, Select. Unlike typical socket operation, they are not
deemed necessary to implement the network communication. From
our observation, we found that the usage of I/O multiplexing shows
a variety of forms in different applications. Fortunately, the network
state transition process can also be modeled as shown in Figure 3:
(1) When the application executes to Poll on 𝑓 𝑑𝑛𝑒𝑡 at the first time,
𝑓 𝑑𝑛𝑒𝑡 is ready for connection, and ready state is set on 𝑓 𝑑𝑛𝑒𝑡 . After
that, the newly network descriptor 𝑓 𝑑 ′𝑛𝑒𝑡 is accepted. (2) When
the application executes to Poll on 𝑓 𝑑 ′𝑛𝑒𝑡 , the ready state is set
on 𝑓 𝑑 ′𝑛𝑒𝑡 . After that, 𝑓 𝑑

′
𝑛𝑒𝑡 is waiting for the data. (3) When the

application executes to Poll at the third time, 𝑓 𝑑 ′𝑛𝑒𝑡 has received
the data, the current fuzzing iteration can terminate and then run
into the next fuzzing round in most cases.
Replay. In the replay phase, we follow the state machine in Figure 3
to emulate the network-related system calls. Specifically, we instru-
ment at the beginning of network-related system calls, and then
feed the expected result as it has executed successfully. We also
maintain the network resources such as sock_addr data structure

socket

bind listen poll/select accept

read/recv/recvfrom

1

2

3

Figure 3: Example of network system call sequences

by filling the corresponding memory, which ensures that subse-
quent execution relying on these network-related resources can
execute correctly.

4.5 Process Resource Limits
Process resource limit refers to themaximumnumber of specific ker-
nel resource that the application can consume, and improper setting
of resource limits may affect the behavior of the PUT. For example,
the resource limit RLIMIT_NOFILE specifies the maximum number
of file descriptors that can be opened by the PUT. In the primary
execution stage of some PUTs, they may traverse all system descrip-
tors, the number of which ranges from zero to the RLIMIT_NOFILE
limit. As a result, the setting of large RLIMIT_NOFILE limit value
would slow down the execution of the PUT. In fact, due to different
system performance, the value of RLIMIT_NOFILE in kernel of the
host machine is much higher than that in the embedded firmware.
Thus, we cannot directly use the value of resource limit from the
host machine.

Therefore, we utilize observe-replay strategy to set the process
resource limits for the PUT in user-mode emulation. Note that
the Linux kernel provides setrlimit and getrlimit system calls
to set or get values of process resource limits. Thus, we retrieve
process resource limit values by monitoring getrlimit during full-
system emulation of firmware in advance. After that, when the PUT
requires the resource limit through getrlimit at the first time, we
provide the observed values directly to them.

5 IMPLEMENTATION
5.1 Emulation

Observation. Initially, EQUAFL executes the PUT with full-system
emulation by utilizing FIRMADYNE, which is an automated and
scalable full-system emulation platform for Linux-based embedded
firmware [5]. During the full-system emulation, EQUAFL performs
observation by instrumenting full-system mode of QEMU at the
end system calls execution. Specifically, when the firmware exe-
cutes to a system call. QEMU will handle the specific exception or
interrupt invoked by the system. EQUAFL treats it as the starting
point of system call execution, and record current execution context.
Later, the firmware will execute to the kernel space, and EQUAFL
instruments at the end of each basic block to detect whether the
firmware execution returns back to the user-space. When firmware
executes to the user-space and the execution context are equal to
the previous records, EQUAFL treats it as the end of the system
execution. Eventually, we can collect the argument and the return
value of each system call execution in the full-system emulation.
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Table 2: Real-world dataset

Vendor Product series Device types Samples

D-Link
DIR / DI
DAP / DSL

DSP / GO-RT

Router
Range extender
Smart plug

30

TRENDnet TEW-DRU / TV-IP
TEW-AP / TEW-DRE

Camera / Router
Access point

Range extender
11

NETGEAR
WNDR / JNR
XWN / WNCE
EX / XAVN

Router / Access point
Wi-Fi adapter / Extender 29

Replay. EQUAFL conducts replay from two aspects. For the launch
variables, filesystem state synchronization, NVRAM configuration,
EQUAFL implements the replay mechanism by deploying the re-
lated resource directly on the host machine, which can be used by
the PUT in the user-mode emulation based fuzzing. For network
behavior, process resource limits, EQUAFL implements the replay
strategy by instrumenting the user-mode mode of QEMU. In the
phase of launch variables settlement, we find the exact point to
dump launch variables by utilizing IDA Pro [21]. Besides, in the
phase of filesystem state synchronization, we first utilize Binwalk
utilities [25] to unpack the firmware and get the original filesys-
tem. After the filesystem state synchronization, we utilize chroot
to specify top directory of extracted firmware filesystem as the
root, so that the PUT in user-mode emulation can access files with
absolute paths correctly.

5.2 Fuzzing
Furthermore, we integrate our enhanced user-mode emulation with
AFL by modifying the following strategies.

PUT lifecycle management. In general, AFL uses the main func-
tion of the PUT to serve as the fuzzing entry point. It forks a child
process at the entry point and conducts the fuzzing in the spawned
process. When the PUT executes to the end, AFL exits the spawned
process and loops back to the entry point for the next fuzzing itera-
tion. In our system, we further reduce the lifecycle of the fuzzing
loop to improve the efficiency. Specifically, we specify the system
call that receive the network input as the entry point. Meanwhile,
we exit the current fuzzing iteration when we detect that the PUT
executes to poll or select system call that is ready for the new
network request as shown in Figure 3.

Entry point of fuzzing. Generally, AFL feeds the test input as a
file to the PUT. Unlike AFL, EQUAFL feeds the input to the memory
buffer that store the network input. Specifically, we implement the
input feeding by instrumenting the system call that receives the
network input such as read, recv and recvfrom. After feeding the
fuzzed input, we also assign the return value with the length of the
fuzzed input.

6 EVALUATION
We implement the prototype of EQUAFL based on QEMU [38] with
modifications on both full-system and user-mode code. Besides, we
also modify AFL to change the parameters accepted by afl-fuzz,

so that the arguments and environment variables of the target
application could be loaded correctly.

With the prototype, we evaluate the performance of EQUAFL
from the following aspects.
• Compatibility. We first evaluate EQUAFL to check if it could
successfully fuzz the applications which cannot be fuzzed directly
by AFL. Also, we compare the system calls sequences/traces of
target applications in EQUAFL with full-system emulation-based
fuzzing to check the correctness of our enhanced user-mode
emulation (§6.2).
• Efficiency. We first measure the overhead that was introduced
in our system by comparing it with pure user-mode emulation.
Then, we evaluate the efficiency of EQUAFL by comparing the
throughput with AFL with full-system emulation and Firm-AFL
(§6.3).
• Vulnerability discovery. We evaluate if EQUAFL can success-
fully find vulnerabilities in real-world embedded firmware appli-
cations (§6.4).

6.1 Experiments Setup
Benchmarks. We use two different datasets as benchmarks in
our experiments: ❶ The first dataset contains two sets of standard
benchmarks: nbench [30] and lmbench [31]. ❷ The other dataset
consists of 70 embedded firmware images from three major embed-
ded device vendors including D-Link, TRENDnet and NETGEAR.
Initially, we collect firmware images by crawling the related ven-
dor’s website. Then, we run them on the AFL-Full and Firm-AFL,
and obtain the firmware samples that can be successfully emulated
and tested. Eventually, We obtain 70 firmware samples in different
product series as candidates for the second dataset. The summarized
information of firmware images is listed in Table 2.

The programs in the standard dataset are smaller and contain no
bugs. So we use them for evaluating the compatibility and efficiency
of EQUAFL. The applications we collected from the real-world
firmware contain bugs, so we use them to not only evaluate the
compatibility and efficiency but also demonstrate how the efficiency
boost of EQUAFL can help in finding real-world bugs.
Baselines.We selected three baselines in our experiments.
• AFL-User. AFL-User follows the default AFL setting, where user-
mode QEMU is used as the emulator.
• AFL-Full.We integratedAFLwith full-system emulation of QEMU
to support fuzzing of target applications in full-system emula-
tion. In the system, we utilized the VMI module in DECAF [20]
to monitor the process of the target application.
• Firm-AFL. Firm-AFL is a state-of-the-art greybox fuzzer that
utilizes both full-system and user-mode emulation to support
efficient fuzzing of Linux-based IoT applications.

Configurations. To improve fuzzing efficiency for all the experi-
ments, we use dictionary option in AFL. The keywords used as the
dictionary tokens are collected through static analysis of target ap-
plication. For each target application, we provide a normal network
request as the initial seed.

For the compatibility and efficiency evaluation, the experiments
are conducted on a 12-core Intel(R) Xeon(R) E5-1650 v3 3.50GHz
CPUmachinewith Ubuntu 18.04.5 LTS operating system and 15.6GB
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RAM. For the vulnerability discovery evaluation, the machine is
18-core Intel(R) Xeon(R) CPU E5-2699 v3 2.30GHz CPU machine
with Ubuntu 18.04.5 LTS LTS operating system and 188GB RAM.

To mitigate the randomness of the fuzzers, each experiment is
repeated for 5 times. In addition, we also followed the suggestions
of [24] to conduct Mann-Whitney U tests [33] and calculated the
𝐴12 values [42].

6.2 Compatibility
Table 3 shows the execution results for both EQUAFL and AFL-
User on the real-world dataset. The real-world applications are
selected following the instructions of Firmadyne. Both AFL-Full
and Firm-AFL can successfully emulate all of them. We categorize
these results into four states: (1) 𝐶𝑅𝐴 - the application crashes
when the fuzzer attempts dry runs with initial seeds; (2) 𝐻𝐴𝑁 -
the application hangs when the fuzzer attempts dry runs with the
initial seeds; (3) 𝐸𝑅𝑅 - the application process can be initiated by
the fuzzer. However, the fuzzer reports some errors such as files
not found when it attempts dry runs with the initial seed. (4) 𝑆𝑈𝐶𝐶
- the application process can be initiated by the fuzzer without
reporting the errors explicitly.

Table 3: EQUAFL vs. AFL-User execution results

Vendor NUM EQUAFL AFL-User

SUCC ERR HAN CRA SUCC ERR HAN CRA

D-Link 30 28 1 1 0 0 27 3 0
TRENDnet 11 9 0 2 0 0 7 4 0
NETGEAR 29 29 0 0 0 0 2 25 2

SUM 70 66 1 3 0 0 36 32 2

In total, 66 out of 70 applications can reach 𝑆𝑈𝐶𝐶 state in EQUAFL.
In contrast, none of the applications can execute in AFL-User
correctly with the default user-mode emulation. For D-Link and
TRENDnet firmware images, EQUAFL can run most of applica-
tions into 𝑆𝑈𝐶𝐶 state, while AFL-User runs most of them into 𝐸𝑅𝑅
state. For NETGEAR firmware images, EQUAFL can run all the
applications into 𝑆𝑈𝐶𝐶 state, while AFL-User runs them into other
incorrect states. The result shows that EQUAFL is much more ef-
fective in successfully executing the real-world applications than
AFL-User.

Furthermore, we depict the emulation accuracy of EQUAFL by
comparing the execution traces of the same seed with EQUAFL
and with AFL-Full. Here, we focus on the correctness of the system
call sequences on the execution traces. Note that we only collect
the system calls sequence after the input has been received by the
application, for two reasons: First, a network application in the full
system emulation normally waits for a while until it receives the
network input. But the network emulation strategy in EQUAFL is
different. EQUAFL handles the network request only when it first
encounters a network socket. As a result, the system call sequences
before receiving the network input are significantly different in
both systems. Second, the fuzzer mainly focuses on the monitoring
application execution after the input is received. Thus, we only
need to check the correctness of the system call sequences after the
input is processed by the application.

We use Levenshtein algorithm [37] to calculate the similarity
of system call sequences. Figure 5 shows the sequence similarity
results. Among 66 applications in 𝑆𝑈𝐶𝐶𝐸𝑆𝑆 state, 44 applications
are identical in the system call sequences comparison. Meanwhile,
16 applications have high similarity, which is larger than 89%. Only
six applications are totally different in the system calls sequence
comparison. With further investigation, we find that the differences
in these six applications are mainly because these applications
involve inter-process communication which causes the system call
sequences to vary. In summary, EQUAFL can execute the target
application almost identically to full-system emulation on the real-
world dataset.

Last but not least, we also evaluate EQUAFL on the standard
dataset to see if it can work well. Specifically, we used nbench to
evaluate the accuracy of the enhanced user-mode emulation in
EQUAFL. If nbench generates output without errors, it proves that
the emulation of EQUAFL is correct. Our evaluation result (see [49])
shows that the enhanced user-mode emulation can execute all the
programs in nbench correctly.

In summary, EQUAFL can execute all the programs in the stan-
dard dataset andmost (66 out of 70) programs in the real-world
dataset successfully. Moreover, for the successfully executed
programs, their system call sequences are mostly identical
to full-system emulation. To conclude, the compatibility of
EQUAFL is comparable to full-system emulation and is much
better than pure user-mode emulation.

6.3 Efficiency
We evaluate the efficiency of EQUAFL from two aspects: ❶ We
measure the fuzzing throughput of EQUAFL and compare it with
AFL-Full and Firm-AFL. ❷ We evaluate the overhead of enhanced
user-mode emulation in EQUAFL over pure user-mode emulation.
Since the real-world applications could not be executed properly
with pure user-mode emulation, we use the standard benchmarks
to complete overhead evaluation.
Real-world Dataset. We first evaluate the throughput perfor-
mance of EQUAFL by comparing it with AFL-Full and Firm-AFL.
Since the main contribution of EQUAFL is to accelerate the exe-
cution of application on the emulator, we did not change any of
the fuzzing strategies of AFL. Thus, the fuzzer in EQUAFL is the
same as the ones used in Firm-AFL and AFL-Full. As a result, the
execution of the target application on the same input can reflect
the performance gain of EQUAFL. Therefore, we collect the 1188
seeds from honggfuzz project [18] to evaluate the throughput of
EQUAFL.

For each application running in EQUAFL, we first test all the
seeds by turns and calculate the average execution time per seed.We
repeat the experiment 5 times and obtain the average value 𝑎𝑣𝑒_𝑡 .
Then, the average throughput 𝑇𝐻𝐸𝑄 is deduced as 1

𝑎𝑣𝑒_𝑡 . Likewise,
We obtained the corresponding values 𝑇𝐻𝐹𝑢𝑙𝑙 and 𝑇𝐻𝐹𝑖𝑟𝑚 from
AFL-Full and Firm-AFL. The result of𝑇𝐻𝐸𝑄 ,𝑇𝐻𝐹𝑖𝑟𝑚 and𝑇𝐻𝐹𝑢𝑙𝑙 for
applications that can execute successfully on baselines with seeds
is shown in Figure 4. Finally, we worked out the throughput per-
formance improvement 𝐼𝑚𝑝𝐹𝑢𝑙𝑙 =

𝑇𝐻𝐸𝑄

𝑇𝐻𝐹𝑢𝑙𝑙
and 𝐼𝑚𝑝𝐹𝑖𝑟𝑚 =

𝑇𝐻𝐸𝑄

𝑇𝐻𝐹𝑖𝑟𝑚

for each application. The results shows 𝑇𝐻𝐹𝑢𝑙𝑙 ranges from 5.1



Efficient Greybox Fuzzing of Applications in Linux-Based IoT Devices via Enhanced User-Mode Emulation ISSTA ’22, July 18–22, 2022, Virtual, South Korea

ds
p-

w
21

5
xa

vn
20

01
v2

di
r-

81
8l

da
p-

16
65

w
nd

rm
ac

v2
te

w
-7

40
ap

bo
da

p-
16

50
te

w
-7

39
ap

bo
te

w
-7

38
ap

bo
da

p-
13

53
da

p-
33

10
w

nd
rm

ac
di

-5
24

da
p-

25
53

da
p-

34
10

di
r-

85
0l

da
p-

23
30

da
p-

23
60

te
w

-6
32

br
p

w
nr

10
00

v1
tv

-ip
11

0w
n

da
p-

15
22

ds
l-2

74
0r

da
p-

26
90

di
r-

86
5l

w
na

p2
10

v2
da

p-
22

30
w

nr
20

00
v1

w
nd

93
0

w
nd

ap
35

0
w

nd
ap

36
0

w
na

p2
10

v1
da

p-
26

60
da

p-
23

10
da

p-
26

95
tv

-ip
12

1w
n

da
p-

35
20

da
p-

36
62

w
na

p2
10

w
nd

r3
7a

vv
2

xw
n5

00
1

go
-r

t-
ac

75
0

da
p-

33
20

w
nd

r3
70

0v
4

w
pn

82
4v

3
w

nd
rm

ac
v1

ex
64

00
ex

73
00

w
nd

r3
70

0v
2

w
n8

02
tv

2
w

ac
12

0
w

na
p3

20
w

pn
82

4e
xt

di
r-

81
8l

w

0

500

1000

1500

2000

2500

T
hr

ou
gh

pu
t(

ca
se

s/
se

c)

EQUAFL

Firm-AFL

AFL-Full

Figure 4: Average execution speed of the evaluated techniques. (Longer is better.)
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to 78 times (26 times on average), and 𝑇𝐻𝐹𝑖𝑟𝑚 ranges from 2.3 to
48 times (14 times on average), which demonstrates that EQUAFL
outperforms state-of-the-art in fuzzing speed.
Standard Dataset.We use both nbench and lmbench to evaluate
the overhead of the enhanced user-mode emulation. Specifically,
nbench is used to test CPU andmemory capabilities of a system. The
result (see [49]) shows that the performance of EQUAFL is similar
to the performance of pure user-mode emulation because the CPU
execution mechanism remains unchanged in the enhanced user-
mode emulation. We then use a system call overhead benchmark
named lmbench for evaluation. The result (see [49]) shows that
the overhead is marginal for both file-related and network-related
system calls.

In summary, EQUAFL can execute the real-world applica-
tions 26 times faster than AFL-Full and 14 times faster than
Firm-AFL on average. Moreover, the overhead of EQUAFL
comparing to pure user-mode emulation is shown to be mar-
ginal on the standard dataset. This shows that EQUAFL enjoys
significantly better efficiency comparing to state-of-the-art
techniques.

Table 4: Time to Exposure (TTE) for First Vulnerability (The
A12 values are highlighted in the bold if its corresponding
Mann-Whitney U test is significant.)

Product EQUAFL Firm-AFL AFL-Full

`TTE `TTE Factor 𝐴12 `TTE Factor 𝐴12

WN2000RPTv1 2220 s 9916 s 4.47 0.76 20409 s 9.19 1.0
WNDRMACv2 5.0 s 5.2 s 1.04 0.60 5.0 s 1.00 0.50

DIR-825 2011 s 12082 s 6.01 0.76 24266 s 12.06 0.96
DSP-W215 5 s 5 s 0.96 0.4 39 s 7.37 1.0
DSL-2740R 214 s 391 s 1.82 1.0 1400 s 6.52 1.0

DAP-2330 (vul #1) 42293 s 86400 s N/A 1.0 86400 s N/A 1.0
DAP-2330 (vul #2) 52002 s 86400 s N/A 1.0 86400 s N/A 1.0
DAP-2330 (vul #3) 51972 s 86400 s N/A 1.0 86400 s N/A 1.0
DAP-2330 (vul #4) 80700 s 86400 s N/A 1.0 86400 s N/A 1.0

6.4 Vulnerability Discovery
We applied EQUAFL to the real-world applications in an effort of
revealing their vulnerabilities. As shown in Table 5, EQUAFL can
discover ten vulnerabilities in total, which affect eighteen embedded
device series. We then manually analyze the root cause of these
vulnerabilities, and finally confirm that nine are NULL pointer
dereference vulnerabilities and one is integer overflow vulnerability.
We also search vulnerability information online, and only one of the
vulnerabilities was revealed by other security researchers before. To
our best knowledge, the rest nine vulnerabilities are still unknown
to the public. We have reported them to the manufacturers, and
six of them have been confirmed as zero-days and assigned CVE
numbers until now.

We run 24-hour experiments on the buggy real-world applica-
tions to compare the fuzzing result on EQUAFL, Firm-AFL and
AFL-Full. First, we select one firmware application for each vulner-
ability. For firmware images that have multiple vulnerabilities, we
still choose one test application. Then, we conduct each fuzzing
experiment with five times repeats in parallel for 24 hours.

Figure 6 shows the average number of unique vulnerabilities
found over time by EQUAFL, Firm-AFL and AFL-Full. The line in
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Table 5: Discovered vulnerabilities

Vendor Vulnerable Product
& Firmware Version

Vulnerable
Application

Vulnerability
NUM (Unknown) CVE

NETGEAR WN2000RPTv1 (1.0.1.20), WPN824EXT (1.1.1),
WNR2000v1 (1.1.3.9), WNR1000v1 (1.0.1.5), WPN824v3 (1.0.8) /bin/boa 1 (1) N/A

NETGEAR WNDRMACv1 (1.0.0.20), WNDRMACv2 (1.0.0.4),
WNDR3700v2 (1.0.0.8), WNDR37AVv2 (1.0.0.10), WNCE4004(1.0.0.22) /usr/sbin/uhttpd 2 (2) N/A

D-Link DIR-825 (2.01EU)
sbin/httpd 1 (1) CVE-2021-29296TRENDnet TEW-632BRP (1.10.31), TEW-634GRU (1.01.06),

TEW-652BRP (1.10.14), TEW-673GRU (1.00.36)
D-Link DSP-W215 /usr/bin/lighttpd 1 (1) CVE-2021-29295
D-Link DSL-2740R (UK_1.01) /userfs/bin/boa 1 (1) CVE-2021-29294

D-Link DAP-2330 (1.01) /sbin/httpd 4 (3)
CVE-2021-28838
CVE-2021-28839
CVE-2021-28840
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Figure 6: Unique vulnerabilities found over time.

Figure 6 is the average number of detected unique vulnerabilities.
The result shows that EQUAFL can find all vulnerabilities faster than
both Firm-AFL and AFL-Full (except for one vulnerability where
EQUAFL and Firm-AFL tied). Table 4 shows the time to expose the
first vulnerability for each technique. `TTE measures the average

time over the five runs. The factor improvement (Factor) measures
the performance gain of `TTE compared with the baselines. 𝐴12
means if we randomly pick one run out of the five repeats, by what
chance can EQUAFL perform better than the baselines. We can see
that EQUAFL can find first vulnerability significantly faster than
both AFL-Full and Firm-AFL.

In summary, EQUAFL can detect vulnerabilities much faster
than AFL-Full and Firm-AFL. This demonstrates that the en-
hanced user-mode emulation of EQUAFL indeed helps to boost
the vulnerability detection capability of the greybox fuzzer.

7 THREATS TO VALIDITY
The threats to validity come from three aspects. First, EQUAFL can
support the emulation of NVRAM peripheral operation in embed-
ded application. Unfortunately, some applications may access other
customized hardware peripherals during execution, which cannot
be supported. We will provide the emulation of more customized
peripherals in future. Second, EQUAFL takes heuristic strategies to
bypass the inter-process communication with other applications.
However, these coarse-grained heuristics may fail in some cases
whose subsequent operations are affected by the communication
content. Third, EQUAFL can find vulnerabilities in a single applica-
tion from embedded firmware. Vulnerabilities that spread across
multiple applications cannot be revealed [9, 39].

8 RELATEDWORK
We summarize automatic vulnerability discovery techniques for
embedded systems from the following perspectives.
Static analysis. Several techniques [14, 15, 46] have been proposed
to perform large-scale homology analysis on firmware images to
find similar vulnerabilities. However, these techniques need to uti-
lize code features of known vulnerabilities, which is limited in
finding unknown vulnerabilities. PIE [13] utilizes machine learning
algorithms to identify vulnerable functions in embedded firmware.
Firmalice [40] combines static analysis and symbolic execution
techniques to discover the authentication bypass vulnerabilities in
firmware. DTaint [12] performs fine-grained data flow and structure
analysis to find taint-style vulnerabilities in firmware. Karonte [39]
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and SaTC [9] can efficiently discover vulnerabilities in embedded
firmware by utilizing the interaction information from both front-
end and back-end programs in embedded firmware. However, these
static techniques can only produce the alerts and the vulnerabilities
need further manual validation.

Dynamic analysis.Most dynamic analysis techniques are orthogo-
nal to EQUAFL. Avatar [47] provides a hybrid emulation framework
for embedded devices, which combines the software emulator and
the real device. Firmadyne [5] and FirmAE [23] develop full soft-
ware emulators for Linux-based embedded firmware images. In our
work, we utilize the Firmadyne to support the full-system emulation
of Linux-based embedded firmware.

Fuzzing. The majority of existing fuzzing techniques focuses on im-
proving efficiency rather than applicability [3, 4, 6, 7, 10, 11, 16, 26–
29, 43–45], whichmeans that theoretically their methods are orthog-
onal to EQUAFL and can be integrated by EQUAFL. For improving
applicability, [1, 22, 48] proposed several methods for creating us-
able fuzz drivers for testing library targets. For fuzzing software
inside embedded systems, IOTFUZZER [8] performs fuzzing by
generating effective protocol inputs directly to devices. Muench
et al. [32] proposes a fuzzing framework of embedded devices by
integrating the boofuzz [36] with diverse emulator approaches.
However, they are black-box fuzzing approaches. Firm-AFL [51]
combines both full-system and user-mode emulation to perform
the fuzzing of applications on Linux-based IoT firmware applica-
tions. However, if the application has a large number of system
calls that should be forwarded to the full-system emulation, the
execution would switch between two emulation modes frequently,
which eventually leads to the low efficiency. Firmcorn [19] uses
CPU emulator to execute the vulnerable code in firmware which
achieves high efficiency of vulnerability-oriented fuzzing. However,
register and contextual memory information are still inadequate for
accurate firmware code execution. Other techniques such as Firm-
Fuzz [41] and EM-Fuzz [17] still adopt the full-system emulation
for embedded firmware, which suffer from efficiency problems.

9 CONCLUSION
We proposed an efficient fuzzing framework EQUAFL for network
applications in Linux-based embedded firmware. The framework
allows to fuzz IoT applications with enhanced user-mode emula-
tion which avoids the cost of full-system emulation of QEMU. We
evaluate EQUAFL on standard benchmarks and 70 real-world ap-
plications from three major embedded device vendors including
D-Link, TRENDnet and NETGEAR. The result shows EQUAFL out-
performs AFL in fuzzing compatibility and it outperforms AFL-Full
and Firm-AFL in fuzzing efficiency. EQUAFL has already found ten
vulnerabilities including six CVEs among these firmware images.
In the future, we attempt to support more customized hardware
peripherals to further improve the compatibility of EQUAFL.
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